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Plan for the Course

X Introduction, Motivation and Background

Lecture 2: Basic Ingredients for a Logic of Rational Agency

Lecture 3: Logics of Rational Agency and Social Interaction,
Part I

Lecture 4: Logics of Rational Agency and Social Interaction,
Part II

Lecture 5: Conclusions and General Issues
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Plan for the Course

Logics of Rational Agency
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Basic Ingredients

I What are the basic building blocks? (the nature of time

(continuous or discrete/branching or linear), how (primitive) events

or actions are represented, how causal relationships are represented

and what constitutes a state of affairs.)

I Single agent vs. many agents.

I What the the primitive operators?

• Informational attitudes
• Motivational attitudes
• Normative attitudes

I Static vs. dynamic
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X informational attitudes (eg., knowledge, belief, certainty)

X group notions (eg., common knowledge and coalitional ability)

X time, actions and ability

X motivational attitudes (eg., preferences)

X normative attitudes (eg., obligations)
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Single-Agent Epistemic Logic

Typically, we write KP instead of �P when the intended
interpretation is “P is known”

K (P → Q): “Ann knows that P implies Q”

KP ∨ ¬KP: “either Ann does or does not know P”

KP ∨ K¬P: “Ann knows whether P is true”

LP: “P is an epistemic possibility”

KLP: “Ann knows that she thinks P is
possible”
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Example
Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

(1, 2)

w1

(1, 3)

w2

(2, 3)

w3

(2, 1)

w4

(3, 1)

w5

(3, 2)

w6
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Example
Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

Ann receives card 3 and card 1
is put on the table
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w1
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Example
Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

M,w1 |= K (T2 ∨ T3)

H1,T2

w1

H1,T3

w2

H2,T3

w3

H2,T1

w4
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Some Questions

Should we make additional assumptions about R (i.e., reflexive,
transitive, etc.)

What idealizations have we made?
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Some Notation

A Kripke Frame is a tuple 〈W ,R〉 where R ⊆W ×W .

ϕ is valid in a Kripke model M if M,w |= ϕ for all states w (we
write M |= ϕ).

ϕ is valid on a Kripke frame F if M |= ϕ for all models M based
on F .
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Logical Omniscience

Fact: ϕ is valid then Kϕ is valid
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Logical Omniscience

Fact: Kϕ ∧ Kψ → K (ϕ ∧ ψ) is valid on all Kripke frames
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Logical Omniscience

Fact: If ϕ→ ψ is valid then Kϕ→ Kψ is valid
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Logical Omniscience
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Logical Omniscience

Fact: ϕ↔ ψ is valid then Kϕ↔ Kψ is valid
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Correspondence

Definition
A model formula ϕ corresponds to a property P (of a relation in a
Kripke frame) provided

F |= ϕ iff F has P

Modal Formula Corresponding Property

Kϕ→ ϕ Reflexive
Kϕ→ KKϕ Transitive
¬Kϕ→ K¬Kϕ Euclidean
ϕ→ KLϕ Symmetric
¬K⊥ Serial

Eric Pacuit: LORI, Lecture 2 12



Correspondence

Definition
A model formula ϕ corresponds to a property P (of a relation in a
Kripke frame) provided

F |= ϕ iff F has P

Modal Formula Corresponding Property

Kϕ→ ϕ Reflexive
Kϕ→ KKϕ Transitive
¬Kϕ→ K¬Kϕ Euclidean
ϕ→ KLϕ Symmetric
¬K⊥ Serial

Eric Pacuit: LORI, Lecture 2 12



Correspondence

Definition
A model formula ϕ corresponds to a property P (of a relation in a
Kripke frame) provided

F |= ϕ iff F has P

Modal Formula Corresponding Property

Kϕ→ ϕ Reflexive

Kϕ→ KKϕ Transitive
¬Kϕ→ K¬Kϕ Euclidean
ϕ→ KLϕ Symmetric
¬K⊥ Serial

Eric Pacuit: LORI, Lecture 2 12



Correspondence

Definition
A model formula ϕ corresponds to a property P (of a relation in a
Kripke frame) provided

F |= ϕ iff F has P

Modal Formula Corresponding Property

Kϕ→ ϕ Reflexive
Kϕ→ KKϕ Transitive

¬Kϕ→ K¬Kϕ Euclidean
ϕ→ KLϕ Symmetric
¬K⊥ Serial

Eric Pacuit: LORI, Lecture 2 12



Correspondence

Definition
A model formula ϕ corresponds to a property P (of a relation in a
Kripke frame) provided

F |= ϕ iff F has P

Modal Formula Corresponding Property

Kϕ→ ϕ Reflexive
Kϕ→ KKϕ Transitive
¬Kϕ→ K¬Kϕ Euclidean

ϕ→ KLϕ Symmetric
¬K⊥ Serial

Eric Pacuit: LORI, Lecture 2 12



Correspondence

Definition
A model formula ϕ corresponds to a property P (of a relation in a
Kripke frame) provided

F |= ϕ iff F has P

Modal Formula Corresponding Property

Kϕ→ ϕ Reflexive
Kϕ→ KKϕ Transitive
¬Kϕ→ K¬Kϕ Euclidean
ϕ→ KLϕ Symmetric

¬K⊥ Serial

Eric Pacuit: LORI, Lecture 2 12



Correspondence

Definition
A model formula ϕ corresponds to a property P (of a relation in a
Kripke frame) provided

F |= ϕ iff F has P

Modal Formula Corresponding Property

Kϕ→ ϕ Reflexive
Kϕ→ KKϕ Transitive
¬Kϕ→ K¬Kϕ Euclidean
ϕ→ KLϕ Symmetric
¬K⊥ Serial

Eric Pacuit: LORI, Lecture 2 12



Modal Formula Property Philosophical Assumption

K (ϕ→ ψ)→ (Kϕ→ Kψ) — Logical Omniscience
Kϕ→ ϕ Reflexive Truth

Kϕ→ KKϕ Transitive Positive Introspection
¬Kϕ→ K¬Kϕ Euclidean Negative Introspection

¬K⊥ Serial Consistency
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The Logic S5

The logic S5 contains the following axioms and rules:

Pc Axiomatization of Propositional Calculus
K K (ϕ→ ψ)→ (Kϕ→ Kψ)
T Kϕ→ ϕ
4 Kϕ→ KKϕ
5 ¬Kϕ→ K¬Kϕ

MP
ϕ ϕ→ ψ

ψ

Nec
ϕ

Kψ

Theorem
S5 is sound and strongly complete with respect to the class of
Kripke frames with equivalence relations.
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Multi-agent Epistemic Logic

The Language: ϕ := p | ¬ϕ | ϕ ∧ ψ | Kϕ

Kripke Models: M = 〈W ,R,V 〉 and w ∈W

Truth: M,w |= ϕ is defined as follows:

I M,w |= p iff w ∈ V (p) (with p ∈ At)

I M,w |= ¬ϕ if M,w 6|= ϕ

I M,w |= ϕ ∧ ψ if M,w |= ϕ and M,w |= ψ

I M,w |= Kϕ if for each v ∈W , if wRv , then M, v |= ϕ
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Multi-agent Epistemic Logic

I KAKBϕ: “Ann knows that Bob knows ϕ”

I KA(KBϕ ∨ KB¬ϕ): “Ann knows that Bob knows whether ϕ

I ¬KBKAKB(ϕ): “Bob does not know that Ann knows that
Bob knows that ϕ”
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Example
Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

Suppose that Ann receives card
1 and card 2 is on the table.

H1,T2

w1

H1,T3

w2

H2,T3

w3

H2,T1

w4

H3,T1

w5

H3,T2

w6
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Group Knowledge

KAP: “Ann knows that P”

KBP: “Bob knows that P”

KAKBP: “Ann knows that Bob knows that P”

KAP ∧ KBP: “Every one knows P”. let EP := KAP ∧ KBP

KAEP: “Ann knows that everyone knows that P”.

EEP: “Everyone knows that everyone knows that P”.

EEEP: “Everyone knows that everyone knows that everyone knows
that P.”
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Common Knowledge

CP: “It is common knowledge that P”

— “Everyone knows that
everyone knows that everyone knows that · · · P”.

Is common knowledge different from everyone knows?

P

w1

P

w2

¬P

w3

A

B

A,B A,B

A,B

w1 |= EP ∧ ¬CP
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Spreading Gossip

Suppose that there are three friends, Ann, Bob and Charles, and
Ann learns a interesting piece of news (P). If each of the friends
are at home, how many calls are needed to create common
knowledge that P?
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Common Knowledge and Coordination

Suppose there are two friends Ann and Bob are on a bus separated
by a crowd.

Before the bus comes to the next stop a mutual friend
from outside the bus yells “get off at the next stop to get a
drink?”.

Say Ann is standing near the front door and Bob near the back
door. When the bus comes to a stop, will they get off?
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Common Knowledge

The operator “everyone knows P”, denoted EP, is defined as
follows

EP :=
∧
i∈A

KiP

w |= CP iff every finite path starting at w ends with a state
satisfying P.
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CP → ECP

Suppose you are told “Ann and Bob are going together,”’
and respond “sure, that’s common knowledge.” What
you mean is not only that everyone knows this, but also
that the announcement is pointless, occasions no
surprise, reveals nothing new; in effect, that the situation
after the announcement does not differ from that before.
...the event “Ann and Bob are going together” — call it
P — is common knowledge if and only if some event —
call it Q — happened that entails P and also entails all
players’ knowing Q (like all players met Ann and Bob at
an intimate party). (Robert Aumann)
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P ∧ C (P → EP)→ CP
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Another Example

Two players Ann and Bob are told that the following will happen.
Some positive integer n will be chosen and one of n, n + 1 will be
written on Ann’s forehead, the other on Bob’s. Each will be able
to see the other’s forehead, but not his/her own.

Suppose the number are (2,3).

Do the agents know there numbers are less than 1000?

Is it common knowledge that their numbers are less than 1000?
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(0,1) (2,1)

(2,3) (4,3)

(4,5) (6,5)

(6,7)

A

B

A

B

A

B
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Example

Ann would like Bob to attend her talk; however, she only wants
Bob to attend if he is interested in the subject of her talk, not
because he is just being polite.

There is a very simple procedure to solve Ann’s problem: have a
(trusted) friend tell Bob the time and subject of her talk.

Is this procedure correct?
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Example

Ann would like Bob to attend her talk; however, she only wants
Bob to attend if he is interested in the subject of her talk, not
because he is just being polite.

There is a very simple procedure to solve Ann’s problem: have a
(trusted) friend tell Bob the time and subject of her talk.

Is this procedure correct? Yes, if

1. Ann knows about the talk.

2. Bob knows about the talk.

3. Ann knows that Bob knows about the talk.

4. Bob does not know that Ann knows that he knows about the
talk.

5. And nothing else.
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Example

P

s

¬P

t

B

A, BA, B

P means “The talk is at 2PM”.
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Example

P

s

¬P

t

B

A, BA, B

Pw1 P w2

¬P w4Pw3

B

A

B

A
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Actions

Actions as transitions between states, or situations:

s t

a
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Propositional Dynamic Logic

Semantics: M = 〈W , {Ra | a ∈ P},V 〉 where for each a ∈ P,
Ra ⊆W ×W and V : At→ ℘(W )

I Rα∪β := Rα ∪ Rβ
I Rα;β := Rα ◦ Rβ
I Rα∗ := ∪n≥0Rn

α

I Rϕ? = {(w ,w) | M,w |= ϕ}

M,w |= [α]ϕ iff for each v , if wRαv then M, v |= ϕ
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Background: Propositional Dynamic Logic

1. Axioms of propositional logic

2. [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

3. [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ

4. [α;β]ϕ↔ [α][β]ϕ

5. [ψ?]ϕ↔ (ψ → ϕ)

6. ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ

7. ϕ ∧ [α∗](ϕ→ [α]ϕ)→ [α∗]ϕ

8. Modus Ponens and Necessitation (for each program α)
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2. [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

3. [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ

4. [α;β]ϕ↔ [α][β]ϕ

5. [ψ?]ϕ↔ (ψ → ϕ)

6. ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ (Fixed-Point Axiom)

7. ϕ ∧ [α∗](ϕ→ [α]ϕ)→ [α∗]ϕ (Induction Axiom)

8. Modus Ponens and Necessitation (for each program α)
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Propositional Dynamic Logic

Theorem PDL is sound and weakly complete with respect to the
Segerberg Axioms.

Theorem The satisfiability problem for PDL is decidable
(EXPTIME-Complete).

D. Kozen and R. Parikh. A Completeness proof for Propositional Dynamic Logic.
.

D. Harel, D. Kozen and Tiuryn. Dynamic Logic. 2001.
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Actions and Ability

An early approach to interpret PDL as logic of actions was put
forward by Krister Segerberg.

Segerberg adds an “agency” program to the PDL language δA
where A is a formula.

K. Segerberg. Bringing it about. JPL, 1989.
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Actions and Agency

The intended meaning of the program ‘δA’ is that the agent
“brings it about that A’: formally, δA is the set of all paths p such
that

1. p is the computation according to some program α, and

2. α only terminates at states in which it is true that A

Interestingly, Segerberg also briefly considers a third condition:

3. p is optimal (in some sense: shortest, maximally efficient,
most convenient, etc.) in the set of computations satisfying
conditions (1) and (2).

The axioms:

1. [δA]A

2. [δA]B → ([δB]C → [δA]C )
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Logics of Action and Agency
Alternative accounts of agency do not include explicit description
of the actions:

t0 t1 t2 t3

· · ·

· · ·
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STIT

I Each node represents a choice point for the agent.

I A history is a maximal branch in the above tree.

I Formulas are interpreted at history moment pairs.

I At each moment there is a choice available to the agent
(partition of the histories through that moment)

I The key modality is [stit]ϕ which is intended to mean that the
agent i can “see to it that ϕ is true”.

• [stit]ϕ is true at a history moment pair provided the agent can
choose a (set of) branch(es) such that every future
history-moment pair satisfies ϕ
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STIT

We use the modality ‘♦’ to mean historic possibility.

♦[stit]ϕ: “the agent has the ability to bring about ϕ”.

Example Consider the example of an agent (call her Ann)
throwing a dart. Suppose Ann is not a very good dart player, but
she just happens to throw a bull’s eye. Intuitively, we do not want
to say that Ann has the ability to throw a bull’s eye even though it
happens to be true. That is, the following principle should be
falsifiable:

ϕ→ ♦[stit]ϕ
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STIT

Example Continuing with this example, suppose that Ann has the
ability to hit the dart board, but has no other control over the
placement of the dart. Now, when she throws the dart, as a matter
of fact, it will either hit the top half of the board or the bottom
half of the board. Since, Ann has the ability to hit the dart board,
she has the ability to either hit the top half of the board or the
bottom half of the board.

However, intuitively, it seems true that Ann does not have the
ability to hit the top half of the dart board, and also she does not
have the ability to hit the bottom half of the dart board. Thus, the
following principle should be falsifiable:

♦[stit](ϕ ∨ ψ)→ ♦[stit]ϕ ∨ ♦[stit]ψ
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STIT

The following model will falsify both of the above formulas:

h1 h2 h3

K1 K2

A

¬B

¬A

B

¬A

¬B

t

J. Horty. Agency and Deontic Logic. 2001.
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End of lecture 2.
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