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Plan for the Course

X Introduction, Motivation and Background

X Basic Ingredients for a Logic of Rational Agency

X Logics of Rational Agency and Social Interaction,
Part I

X Logics of Rational Agency and Social Interaction,
Part II

Lecture 5: Conclusions and General Issues
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Plan for the Course

Merging logics of rational agency

I Reasoning about information change (knowledge and
time/actions)

I Knowledge, beliefs and certainty

I “Epistemizing” logics of action and ability: knowing how to
achieve ϕ vs. knowing that you can achieve ϕ

I Entangling knowledge and preferences

I Planning/intentions (BDI)
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Thus logical properties of beliefs can be derived from properties of
preferences.

S. Morris. The Logic of Belief and Belief Change: A Decision Theoretic Ap-
proach. Journal of Economic Theory (1996).
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The Framework

Let Ω be a set of states.

An act is a function x : Ω→ R. Let <Ω be the set of all acts.

xw for w ∈ Ω means that if the true state is w , then the agent
receives prize x .

We write x �w y the agent prefers x over y provided the true
state is w
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Belief Operators

A belief operator is a function B : 2Ω → 2Ω

For E ⊆ Ω, w ∈ B(E ) means the agent believes E at state w

B is normal if

I B(Ω) = Ω

I B(E ∩ F ) = B(E ) ∩ B(F )

Possibility function: P : Ω→ 2Ω: set of states the agent considers
possible at w
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Defining Beliefs from Preferences

For E ⊆ Ω and two acts x and y , let (xE , y−E ) denote the new act
that is x on E and y on −E .

B reflects {�w}w∈Ω provided for each E ⊆ Ω

B(E ) = {w | (xE , y−E ) ∼w (xE , z−E ) for all x , y , z ∈ <Ω}
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Theorem If the preference relations are complete and transitive,
then the derived belief operator is normal.
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Alternative Definitions

For x , y ∈ <Ω, write x ≥ y if for each w ∈ Ω, xw ≥ yw

x >> y iff xw > yw for each w ∈ Ω

B∗(E ) = {w | (xE , z−E ) �w (yE , v−E ) for all x >> y , x , y , z , v ∈ <Ω}

Preferences are monotone if x >> y implies x �w y and x ≥ y
implies x �w y for all w ∈ Ω.

Theorem B∗ is normal if the preference relations are monotone,
non-trivial and transitive.

S. Morris. Alternative Definitions of Knowledge. in Epistemic Logic and the
Foundations of Decision and Game Theory, eds. Bacharach et al..
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Coherency

A minimal rationality property relating together preferences at
different states of Ω.

Preferences are coherent if choices made at different states can be
seen as reflecting a true, metapreference ordering over acts.

A preference relation � is a meta-ordering if it is complete,
transitive, continuous and for all x , y , z ∈ <Ω

(xw , z−w ) � (yw , z−w )⇔ xw ≥ yw
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Decision Problem

A decision problem is a finite set of acts D

Cw [D] = {x ∈ D | x �w y for all y ∈ D}

A decision rule is a function f : Ω→ D

f is optimal provided for each w ∈ Ω, f (w) ∈ Cw [D]

C ∗[D] = {x ∈ <Ω | xw = fw (w) for all w ∈ Ω for some optimal f }
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Coherency

Preferences are coherent if there exists a meta-ordering �∗ such
that for each finite D, there exists x ∈ C ∗[D] such that x �∗ y , for
all y ∈ D.

Theorem If preferences are coherent, then the beliefs reflecting
them satisfy the knowledge axiom (B(E ) ⊆ E ) and positive
introspection (B(E ) ⊆ B(B(E ))).
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Knowledge and Voting
Theorem (Gibbard-Satterthwaite) There must be situations
where it ‘profits’ a voter to vote strategically, i.e., not according to
his or her actual preference.

Under suitable conditions,

1. If P denotes the actual preference ordering of voter i ,

2. and ~Y denotes the profile consisting of the preference
orderings of all the other voters,

3. and S the aggregation rule,

Then the theorem says that there must exist P,Y ,P ′ such that
S(P ′,Y ) >P S(P,Y ).
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Two Issues

1. What does it mean to vote strategically?

• Voting as a game vs. voting as an act of communication

2. When is the Gibbard-Satterthwaite Theorem ‘effective’?

• The decision to strategize depends on the agents’ information
(eg. poll information).

S. Chopra, E. Pacuit and R. Parikh. Knowledge-theoretic Properties of Strategic
Voting. JELIA 2004.
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Voting Problem

Given a (finite) set X of candidates

and a (finite) set A of voters

each of whom have a preference over X

Devise a method F which aggregates the individual preferences to
produce a collective decision (typically a subset of X )
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Voting Procedures

I Type of vote, or ballot, that is recognized as admissible by
the procedure: let B(X ) be the set of admissible ballots for a
set X of candidates

I A method to count a vector of ballots (one ballot for each
voter) and select a winner (or winners)

Formally, A voting procedure for a set A of agents (with |A| = n)
and a set X of candidates is a pair

(B(X ),Ag)

I B(X ) is a set of ballots; and

I Ag : B(X )n → 2X (typically we are interested in the case
where |Ag(~b)| = 1).
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Examples

Plurality (Simple Majority)

I B(X ) = X

I Given ~b ∈ X n and x ∈ X , let #x(~b) =
∑
{i | bi =x} 1

Ag(~b) = {x |#x(~b) is maximal}

Approval Voting

I B(X ) = 2X

I Ag(~b) = {x |#x(~b) is maximal}
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Strategizing Functions

Fix the voters’ true preferences: P∗ = (P∗1 , . . . ,P
∗
n)

Given a vote profile ~v of actual votes, we ask whether voter i will
change its vote if given another chance to vote.
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Example I

The following example is due to [Brams & Fishburn]

P∗A = o1 > o3 > o2

P∗B = o2 > o3 > o1

P∗C = o3 > o1 > o2

Size Group I II

4 A o1 o1

3 B o2 o2

2 C o3 o1

If the current winner is o, then agent i will switch its vote to some
candidate o ′ provided

1. o ′ is one of the top two candidates as indicated by a poll

2. o ′ is preferred to the other top candidate

Eric Pacuit: LORI, Lecture 5 19



Example I

The following example is due to [Brams & Fishburn]

P∗A = o1 > o3 > o2

P∗B = o2 > o3 > o1

P∗C = o3 > o1 > o2

Size Group I II

4 A o1 o1

3 B o2 o2

2 C o3 o1

If the current winner is o, then agent i will switch its vote to some
candidate o ′ provided

1. o ′ is one of the top two candidates as indicated by a poll

2. o ′ is preferred to the other top candidate

Eric Pacuit: LORI, Lecture 5 20



Example II

P∗A = (o1, o4, o2, o3)

P∗B = (o2, o1, o3, o4)

P∗C = (o3, o2, o4, o1)

P∗D = (o4, o1, o2, o3)

P∗E = (o3, o1, o2, o4)

Size Group I II III IV

40 A o1 o1 o4 o1

30 B o2 o2 o2 o2

15 C o3 o2 o2 o2

8 D o4 o4 o1 o4

7 E o3 o3 o1 o1

If the current winner is o, then agent i will switch its vote to some
candidate o ′ provided

1. i prefers o ′ to o, and

2. the current total for o ′ plus agent i ’s votes for o ′ is greater
than the current total for o.
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Example III

P∗A = (o1, o2, o3)

P∗B = (o2, o3, o1)

P∗C = (o3, o1, o2)

Size Group I II III IV V VI VII · · ·
40 A o1 o1 o2 o2 o2 o1 o1 o1

30 B o2 o3 o3 o2 o2 o2 o3 o3

30 C o3 o3 o3 o3 o1 o1 o1 o3
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Summary

Agents, knowing an aggregation function, will strategize if they
know

a. enough about other agents’ preferences and

b. that the output of the aggregation function of a changed
preference will provide them with a more favorable result.
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Beliefs & Plans/Intention

T. Icard, EP and Y. Shoham. A Dynamic Logic of Belief and Intention.
Manuscript (2009).
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Plan

I (Very!) Brief Discussion of Existing literature

I Belief-Intention Models

I Dynamics
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Some Literature

Stemming from Bratman’s planning theory of intention a number
of logics of rational agency have been developed:

I Cohen and Levesque; Rao and Georgeff (BDI); Meyer, van der
Hoek (KARO); Bratman, Israel and Pollack (IRMA); and
others.

Some common features

I Underlying temporal model

I Belief, Desire, Intention, Plans, Actions are defined with
corresponding operators in a language

J.-J. Meyer and F. Veltman. Intelligent Agents and Common Sense Reasoning.
Handbook of Modal Logic, 2007.
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Intention Revision

Many of the frameworks do discuss some form of intention revision.

W. van der Hoek, W. Jamroga and M. Wooldridge. Towards a Theory of Inten-
tion Revision. Synthese, 2007.

I Beliefs are sets of Linear Temporal Logic formulas (eg., ©ϕ)

I Desires are (possibly inconsistent) sets of Linear Temporal
Logic formulas

I Practical reasoning rules: α← α1, α2, . . . , αn

I Intentions are derived from the agents current active plans
(trees of practical reasoning rules)
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Intention Revision

Many of the frameworks do discuss some form of intention revision.

W. van der Hoek, W. Jamroga and M. Wooldridge. Towards a Theory of Inten-
tion Revision. Synthese, 2007.

I Two types of beliefs: strong beliefs vs. weak beliefs (beliefs
that take into account the agent’s intentions)

I A dynamic update operator is defined ([Ω]ϕ)
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Our Framework

I Database/Planner picture

I Sources of beliefs

I What type of information does a planner provide? How do we
represent a plan?

I Sources of dynamics: What can cause an agent’s database to
change?

I Changing/amending plans vs. revising/updating beliefs

Eric Pacuit: LORI, Lecture 5 40



Our Framework

1. At a fixed moment, a choice situation describes the current
state-of-affairs (i.e., facts about the state-of-the-world), the
tree of options that are available to the agent (i.e., the
decision tree) and how actions change state of the world (i.e.,
the effect that performing an action will have on the
state-of-the-world).

2. At a fixed moment, a model describes the agent’s (current)
beliefs (about the current state-of-the-world and what will
become true in the future including options that will become
available) and the agent’s (current) instructions from the
Planner (about future choices).

Eric Pacuit: LORI, Lecture 5 41



Our Framework

1. At a fixed moment, a choice situation describes the current
state-of-affairs (i.e., facts about the state-of-the-world), the
tree of options that are available to the agent (i.e., the
decision tree) and how actions change state of the world (i.e.,
the effect that performing an action will have on the
state-of-the-world).

2. At a fixed moment, a model describes the agent’s (current)
beliefs (about the current state-of-the-world and what will
become true in the future including options that will become
available) and the agent’s (current) instructions from the
Planner (about future choices).

Eric Pacuit: LORI, Lecture 5 41



Our Framework

3. Dynamic operators representing each of the situations that
may cause a change in beliefs and/or plans: learning a true
fact, doing an action and receiving instructions from the
Planner. These operators will describe how to relate models
at different moments.
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Choice Situations

Mw = (W , {Ra}a∈Act,V ,w)

t = 0

t = 1

t = 2

t = 3

w

a b

c d

c ′

a′ b′

d ′ e

...
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Choice Situations: L1

ϕ := p | ϕ ∧ ϕ | ¬ϕ | 〈a〉ϕ

I Mw � p iff w ∈ V (p)

I Mw � ϕ ∧ ψ iff Mw � ϕ and Mw � ψ
I Mw � ¬ϕ iff Mw 2 ϕ
I Mw � 〈a〉ϕ iff ∃x wRax and Mx � ϕ.

Notation: If α = a1a2a3 · · · an, 〈α〉ϕ := 〈a1〉 · · · 〈an〉ϕ

Nϕ :=
∧

a∈Act[a]ϕ [t]ϕ :=

t times︷ ︸︸ ︷
N...N ϕ

Pϕ :=
∨

a∈Act〈a〉ϕ 〈t〉ϕ :=

t times︷ ︸︸ ︷
P...P ϕ
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Adding Beliefs

Standard picture where worlds are choice situations

Mw � Nv : Choice situation Nv is at least as plausible as Mw .

1. Beliefs are about available options, current and future state of
affairs: Bp ∧ B〈a〉〈b〉q

2. Immediate options are known.

3. In the static model, restrict the language to only talk about
current beliefs: 〈a〉Bϕ is not well-formed
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Belief Structures

Mw = (W , {Ra}a∈Act,V ,w)
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Belief Structures

Mw = (W , {Ra}a∈Act,V ,w)

t = 0

t = 1

t = 2

t = 3

w

a b

c d

c ′

a′ b′

d ′ e

...
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Belief Structures

Mw = (W , {Ra}a∈Act,V ,w)

Equally plausible
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Belief Structures

Mw = (W , {Ra}a∈Act,V ,w)

More plausible
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Belief Structures

Language (L2): ϕ := χ | ϕ ∧ ϕ | ¬ϕ | B(ϕ), χ ∈ L1

Structures B = (S ,�,Mw ) is a belief structure if:

(i) S a set of choice situations

(ii) � is a plausibility ordering (reflexive, transitive, well-founded)

(iii) Mw ∈ S .

(iv) If wRax for some x in M, then for all Nv ∈ S s.t. Mw � Nv ,
there is some x ′ for which vRax ′ in N .

(v) If Mw � Nv and vRax for some x in N , there is some
x ′ ∈W such that wRax ′ in M.
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Belief Structures

B 
 χ, iff Mw � χ.

B 
 ϕ ∧ ψ, iff B 
 ϕ, and B 
 ψ.

B 
 ¬ϕ, iff B 1 ϕ.

B 
 B(ϕ), iff for all Nv ∈ Min�(S), B,Nv 
 ϕ.
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Completeness

1. Standard proof works for the class of choice situations

2. The class of belief structures is also easily axiomatized (�ϕ
means ϕ is true an all worlds at least as plausible as the
current world):

• KD45 for B
• 〈a〉> → �(〈a〉>)
• ♦(〈a〉>)→ 〈a〉>
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Instructions
At each moment there are instructions from the Planner: We
assume that at each moment, there are some instructions about
future choices that the agent has agreed to follow (if he can).

1. A complete plan, for each moment the specific action a ∈ Act
the agent will perform.

2. The instructions may be partial: finite list of pairs (a, t) where
a ∈ Act and t ∈ N.

3. The instructions may be conditional: do a at time t provided
ϕ is true.

4. Rather than instructing the agent to follow a specific (partial,
conditional) plan, the Planner simply restricts the choices that
are available to the agent in the future.

5. The Planner may provide more complicated structure (subplan
structure, goals, etc.)
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Belief-Intention Structures

B = (S ,�, I ,Mw ) is a belief-intention structure where

I (S ,�,Mw ) is a belief structure

I and I is a finite set of pairs (a, t), such that a ∈ Act and
t ∈ N, and

I Belief-Intention Coherency: There exists some
Nv ∈ Min�(S) such and ~a in N , such that for each (b, t) ∈ I ,
b = at

We say Nv admits I , and that the sequence ~a is a satisfying
sequence for I .
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Belief-Intention Structures: Language

Language: ϕ := χ | ϕ ∧ ϕ | ¬ϕ | B(ϕ) | Ia,t | B I (ϕ)
(with χ ∈ L1)

Bϕ: the agent believes ϕ

B Iϕ: the agent believes ϕ given that the instructions are followed

Ia,t : the agent intends to do a, t units from now
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Belief-Intention Structure: Truth

B = (S ,�, I ,Mw ) is a belief-intention structure.

B 
 Ia,t , iff (a, t) ∈ I .

B 
 B(ϕ), iff for all Nv ∈ Min�(S), (S ,�, I ,Nv ) 
 ϕ.

B 
 B I (ϕ), iff for all Nv ∈ Min�(S) admitting I ,
(S ′,�′, I ,N I

v ) 
 ϕ

where all choice situations are restricted to satisfying
sequences.
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Completeness

Theorem The class of all belief-intention structures is
axiomatizable.

Axioms for Belief

I KD45 axioms and rules for B and B I

I B(ϕ)↔ B I (B(ϕ))

I ¬B(ϕ)→ B I (¬B(ϕ))

I B I (ϕ)↔ B(B I (ϕ))

I ¬B I (ϕ)→ B(¬B I (ϕ))

I B I (ϕ)→ B̂(ϕ)
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Completeness

Theorem The class of all belief-intention structures is
axiomatizable.

Consistency of Intentions and Beliefs

I Ia,t ↔ B(Ia,t)↔ B I (Ia,t)

I ¬Ia,t ↔ B(¬Ia,t)↔ B I (¬Ia,t)

I Ia,t → B I (〈[t]〉(〈a〉> ∧
∧

b 6=a∈Act[b]⊥))

I B I (
∨

[~a]ϕ)→ (B(
∨

[~a]ϕ) ∨
∨
~a)

I B(
∧

[~a]ϕ→
∨

[~b]ψ)→ (B I (
∧

[~a]ϕ→
∨

[~b]ψ) ∨
∨
~a)
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Dynamics

There are three sources of dynamics:

1. Nature can reveal (true) facts about the current choice
situation (eg., facts that are true, choices that are
available/not available in the future).

2. The agent can decide to perform an action (which in turn
forces Nature to reveal certain information such as which
actions become available).

3. The Panner can amend the agent’s current set of instructions.

We assume that only doing an action moves time forward.
However, all three types of events may change the agent’s beliefs
and current instructions.
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a

I = {(b, i + 1), (d , i + 2)}

Add (f , i + 3)
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Selection Function

A selection function γ maps a set of choice situations B a finite
set of action-time pairs C to a finite set of action time pairs:
γ : P(ChoicSit)× P<ω(Int)→ P<ω(Int)

1. γ(B,C ) ⊆ C

2. γ(B,C ) is coherent with B.
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Selection Functions

let B be a set of choice situations (representing the agents current
beliefs), I a set of action-time pairs (representing the agents
current intentions) and (a, t) an intention

I (consistency) If I ∪ {(a, t)} is consistent with B then
γ(B, I ∪ {(a, t)}) = I ∪ {(a, t)}

I (success) (a, t) ∈ γ(B, I ∪ {(a, t)})

I (minimal change) If I ′ ⊆ I and I ′ ∪ {(a, t)} is consistent with
B then I ′ ⊆ γ(B, I ∪ {(a, t)})

I Other properties may depend on the structure of the plans:

• if {(a1, t1), . . . , (an, tn)} ⊆ I form a (sub)plan, then either
{(a1, t1), . . . , (an, tn)} ⊆ γ(B, I ∪ {(a, t)}) or
{(a1, t1), . . . , (an, tn)} ∩ γ(B, I ∪ {(a, t)}) = ∅
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Incorporating a new intention

.

I [+(a, t)]ϕ: after adopting the intention to do a at time t, ϕ is
true.

I Given a selection function γ, let I + a = γ(B, I ∪ {(a, t)}) be
the new set of intentions where B is the current minimal set
of choice situations and I the current set of intentions.
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Observing a true fact

I [ϕ]ψ after observing that ϕ is true then ψ is true.

I The precondition is that ϕ is true. We also assume that ϕ is
in the language L1.

I Bϕ = (S ′,�′, I ′,M′w ) where S ′ = {Nv ∈ S | Nv |= ϕ},
�′=� ∩S ′, I ′ = I and V ′(p) = V (p) ∩ S ′.
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Doing an action

I [DO(a)]ϕ: “after the agent does action a, then ϕ is true”

I The precondition is that action a is possible in the actual
choice situation

I We may assume further that the agent can only do something
currently consistent with his intentions.
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Doing an action

I The result of doing an action a is the belief-intention
structure Ba is constructed by first incorporating the fact that
a has been executed, so the new set of states are
S ′ = {N do(a)

v ′ | Nv ∈ S}.
Next the agent observes which actions are available. I.e., if

Opt is the (finite) set of immediately available in Mdo(a)
w ′ then∧

a∈Opt

〈a〉> ∧
∧

b 6∈Opt

[b]⊥

is announced

I This may result in a situation where the agents intention set I
is no longer consistent with the new beliefs.
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Conclusions

I Reexamined some foundational issues in logics of belief and
intentions/plans.

I A number of questions remain about how to axiomatize the
dynamic operators
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Conclusions
We are interested in reasoning about rational agents interacting in
social situations.

What do the logical frameworks contribute to the discussion on
rational agency?

I Normative vs. Descriptive

I refine and test our intuitions: provide many answers to the
question what is a rational agent?

I (epistemic) foundations of game theory
Logic and Game Theory, not Logic in place of Game Theory.

I Social Software: Verify properties of social procedures

• Refine existing social procedures or suggest new ones

R. Parikh. Social Software. Synthese 132 (2002).
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Conclusions

I Many types of informational attitudes: “hard” knowledge,
belief, belief about the future state of affairs, “intention”
based beliefs, revisable beliefs, safe beliefs.

I Where does the “protocol” come from? What do the agents
know about the protocol?
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Logics of Rational Agency

I What’s going on in the area:
www.loriweb.org

I LORI-II, October 8 - 11, 2009, Chongqing, China
loriweb.org

I Special Issue of Synthese: Knowledge, Rationality and
Interaction. Logic and Intelligent Interaction, Volume 169,
Number 2 / July, 2009
(eds. T. Agotnes, J. van Benthem and EP)

I New subarea of Stanford Encyclopedia of Philosophy on logics
and rational agency
(eds. J. van Benthem, E. Pacuit, and O. Roy)
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http://www.loriweb.org
http://www.loriweb.org
http://plato.stanford.edu


Calls for....

I Papers: LOFT 2010. University of Toulouse, July 21 - 23.
Deadline: March 15, 2010.

I Course/Workshop Proposals: NASSLLI, Indiana Univeristy,
Bloomington. Deadline: September 15.

I Ph.D. position: TiLPS, Tilburg University, “A formal
analysis of social procedures”. Deadline: October 15 (to start
in February).
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http://www.econ.ucdavis.edu/faculty/bonanno/loft9.html
http://www.indiana.edu/~nasslli


Thank you!
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