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These notes contain material for a course on “Logics of Rational Agency” taught at
the European Summer School for Logic, Language and Information in Bordeaux,
France on July 26 - 31, 2009 (ESSLLI 2009). This document contains an extended
outline of the course including pointers to relevant literature. The main idea of
this reader is to provide a bird’s eye view of the literature and to highlight some
of the main themes that we will discuss in this course. The course website:

ai.stanford.edu/∼epacuit/classes/esslli/log-ratagency.html

will contain the (updated) lecture notes and slides (updated each day). Enjoy the
course and please remember to ask questions during the lecture and also point out
any mistakes and/or omitted references in this text!

The goal of this course is to introduce the main conceptual ideas and technical
tools that drive much of the research developing logics of rational agency. The
course draws on a number of different sources including a recent course on “Ratio-
nal Agency and Intelligent Interaction” taught at Stanford University with Yoav
Shoham and Johan van Benthem. The website contains pointers to a number of
relevant papers and textbooks. Below is a (very) brief outline of the course:

Day 1: Introduction, Motivation and Background

Day 2: Basic Ingredients for a Logic of Rational Agency

Day 3: Logics of Rational Agency and Social Interaction, Part I

Day 4: Logics of Rational Agency and Social Interaction, Part II

Day 5: Conclusions and General Issues
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Introduction and Motivation

A quick glance at the opening paragraphs in many of the classic logic textbooks
reveals a common view: logical methods highlight the reasoning patterns of a single
(idealized) agent engaged in some form of mathematical thinking1. However, this
traditional view of the “subject matter” of logic is expanding. There is a growing
literature using phrases such as “rational interaction” or “information flow” to
describe its subject matter while still employing traditional logical methods. The
clearest example of this can be found in the work of Johan van Benthem and others
on logical dynamics (van Benthem, 1996; van Ditmarsch et al., 2007), Rohit Parikh
and others on social software (Parikh, 2002; van Eijck and Vergrugge, 2009)2;
and Samson Abramsky and others on game semantics (Abramsky, 2007). There
are many issues driving this shift in thinking about what logic is about (see van
Benthem, 2005, for a discussion). Most relevant for this course is the important
(and sometimes controversial) role logic has played in AI (Thomason, 2009) and
the analysis of distributed algorithms (Halpern et al., 2001, Section 5).

This course will introduce logics for reasoning about communities of agents en-
gaged in some form of social interaction. Much of this work builds upon existing
logical frameworks developed by philosophers and computer scientists incorporat-
ing insights and ideas from philosophy, game theory, decision theory and social
choice theory. The result is a web of logical systems each addressing different
aspects of rational agency and social interaction. Rather than providing an en-
cyclopedic account of these different logical systems, we will focus on the main
conceptual and technical issues that drive a logical analysis. The main objective
is to see the various logical systems as a coherent account of rational agency and
social interaction. To that end, we will focus on the following three questions:

1. How can we compare different logical frameworks addressing similar as-
pects of rational agency and social interaction (eg., how information evolves
through social interaction)?

2. How should we combine logical systems which address different aspects of
social interaction towards the goal of a comprehensive (formal) theory of
rational agency?

1A (biased) sampling from my bookshelf: Shoenfield’s Mathematical Logic: “Logic is the
study of reasoning; and mathematical logic is the study of the type of reasoning done by mathe-
maticians”; Enderton’s A Mathematical Introduction of Logic: “Symbolic logic is a mathematical
model of deductive thought”; and Chiswell and Hodges Mathematical Logic: “In this course we
shall study some ways of proving statements.”

2This is the topic of the ESSLLI 2009 course Games, Actions and Social Software taught by
Rineke Verbrugge & Jan van Eijck.
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3. How does a logical analysis contribute to the broader discussion of rational
agency and social interaction within philosophy and the social sciences?

There are two main goals of this course. The first is to analyze various logical
systems addressing different aspects of (rational) agency. Again the objective is
not to provide a complete survey of all the relevant logical systems, but rather to
develop concrete answers to the above questions. This will certainly raise a number
of different methodological and technical issues (especially concerning the first
two questions). Sometimes the differences between two competing logical systems
are technical in nature reflecting different conventions used by different research
communities. And so, with a certain amount of technical work, such frameworks
are seen to be equivalent up to model transformations (cf. Halpern, 1999; Lomuscio
and Ryan, 1997; Pacuit, 2007; Goranko and Jamroga, 2004). Other differences
point to key conceptual issues about rational agency and social interaction (cf.
van Benthem et al., 2008; van der Hoek and Wooldridge, 2003). This leads us
to the second main goal of this course: to develop the main technical skills and
conceptual understanding needed to navigate the fast-growing literature on logics
of rational agency

Any discussion of rationality, agency and social interaction naturally touches
on a variety of disciplines and often evokes strong opinions. This is especially
true when considerations from empirically-based sciences pointing to experiments
showing how “humans really behave” are taken into account. However, the situa-
tion is not any simpler when engaged in “pure” conceptual modeling. Here the use
of formal models often generates a number of interesting technical issues. Further-
more (and often more interesting), there are questions that are not mathematical
in nature but involve the meaning of the fundamental concepts employed in the
formal analyses. In other words, the debates concerns the very nature of rational-
ity (cf. Nozik, 1993; Harman, 1999), what constitutes an agent (cf. Bratman, 2007;
van Benthem, 2009), underlying assumptions about rational decision making (cf.
Skyrms, 1990; McClennen, 1990; Stalnaker, 1999; Brandenburger, 2007; Binmore,
2009) and the role formal models play in philosophy and the social sciences (cf.
Arrow, 1951; Aumann, 1985; Binmore, 2007; Kreps, 1990; van Benthem, 2008).

Of course, there is no single approach that can address all of the complex
phenomena that arise when rational and not-so rational agents interact with one
another and the environment. Thus it is important to understand both the scope
of a particular analysis and how different analyses from within and across the
disciplines mentioned above can fit together. This will be an important theme
throughout this course.

Ingredients of a logical analysis of rational agency Agents are faced
with many diverse tasks when interacting with each other and the environment.
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The logical systems discussed in this course describe many different aspects of
social interactive situations. They not only highlight patterns of theoretical and
practical reasoning, but also the dynamic processes that govern social interactions.
Obviously, no formal model can address every issue that influences and agent’s
(rational) behavior in a social situation. So, there are a number of important
choices that guide any logical analysis:

What are the basic building blocks? Any mathematical model of a social situation
starts with a number of underlying assumptions. For example, there are often sim-
plifying assumptions about the nature of time (continuous or discrete/branching
or linear), how (primitive) events or actions are represented, how causal relation-
ships are represented and what constitutes a state of affairs. Such assumptions
typically reflect common-sense intuitions about these fundamental concepts3.

Single agent vs. many agents. The difference between these two choices often
goes beyond choosing whether or not to explicitly represent multiple agents in
the formal models. There are a number of group notions that have been exten-
sively studied including common knowledge, distributed knowledge and coalitional
ability. Another distinction is relevant here: a logical analysis may take a first
person perspective or a third person perspective. On the third person perspective
(arguably the one most commonly found in the literature), the logic is intended to
reason about a group of agents interacting with each other from the point-of-view
of the modeler. On the first-person perspective, one agent is given a special status
and the logical system represents the reasoning and/or abilities of that agent (cf.
Aucher, 2008). This distinction has been extensively discussed by philosophers
such as David Lewis (1996) but only recently has made its way into the logic
literature (cf. Hendricks, 2009)

Which aspects of agency and social interaction are relevant? Alternatively, how
should we talk about an agent’s “cognitive makeup” and the normative forces that
influence social behavior? The vocabulary used in many logical analyses typically
reflects a common-sense, or folk, understanding of our states of mind4. The logical
frameworks discussed in this course not only describe physical aspects of a social

3This is not to say that the extensive philosophical literature discussing each of these im-
portant issues should be ignored. Rather this reflects the somewhat crude level of abstraction
where these logical frameworks reside.

4Again, this is not meant to suggest that important ideas from cognitive science, psychology
and philosophy are or should be ignored. The point is that much of the current work discussed
in these notes presumes some form of folk psychology. Of course, the influential work of Dennett
(1987) is relevant here. See also (Ravenscroft, 2008) for a more general discussion and pointers
to the relevant literature.
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situation (eg., which actions are available, which events have taken place, what
facts are true and what may be true in the future) but also the agents’ attitudes
towards these different descriptions. The different attitudes can be categorized
according to their direction of fit5:

Informational attitudes describe an agent’s view about the way the world
is. Typical examples from this category include “knowledge”, “beliefs” and “cer-
tainty”.

Motivational attitudes describe what the agent may want to change in the
world. Typical examples from this category include “preferences”, “desires”, and
“goals”

There is a third type of attitude that has also been the center of logical analyses.

Normative attitudes do not describe what an agent wants or believes, but
what the agent should do. Typical examples from this category include “obliga-
tions” and “permissions”.

Static vs. dynamic. Much of this course will focus on how to incorporate “dy-
namics” into various logical frameworks, so we will will not go into details here.

Related Work Currently, there is no textbook that covers all of the issues
we will highlight in this course. However, the reader is encouraged to consult
the textbooks (Fagin et al., 1995; Wooldridge, 2000; van Benthem, 2009; Horty,
2001; Shoham and Leyton-Brown, 2009) and the articles (Meyer and Veltman,
2007; van der Hoek and Wooldridge, 2003) for extended discussion of some of the
specific logical frameworks and issues we will discuss during the course. There are
also other courses here at ESSLLI that will discuss related topics:

• Logics of Individual and Collective Intentionality taught by Anreas Herzig
and Emiliano Lorini (Week 1)

• Games, Actions and Social Software taught by Rineke Verbrugge and Jan
van Eijck (Week 1)

• The Workshop Logical Methods for Social Concepts (Week 1)

5This famous distinction, first pointed out by (Anscombe, 1963, pg. 56), has been widely
discussed by philosophers.
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• Dynamic Logics for Interactive Belief Revision taught by Alexandru Baltag
and Sonja Smets (Week 2)

• Logic and Agent Programming Languages taught by Natasha Alechina and
Brian Logan (Week 2)

This is a foundational course, so there are no prerequisites and all the material
will be self-contained. Some experience with modal logic may be helpful, but
this is not necessary. The appendix contains a short introduction to some of the
technical details we will touch on in the course and can be used as a reference

Extended Outline

Below is an extended outline of the course. The ordering of the topics may change,
so please consult the course website for the most up-to-date information. The
course will be taught over 5 days during the 2nd week of ESSLLI. A detailed
schedule will be maintained on the website . The course will be divided into 4
main parts with the general outline is given below (including pointers to relevant
reading material):

Part 0: Introduction, Motivation and Background (.5 meetings) The
main source will be these course notes, but also the articles and textbooks men-
tioned above in the related works section.

Part I: Basic Ingredients (1.5 meetings) We will introduce a number of logical
frameworks for reasoning about

X informational attitudes (eg., knowledge and belief)

X motivational attitudes (eg., preferences)

X time, actions and ability

X group notions (eg., common knowledge and coalitional ability)

X normative attitudes (eg., obligations)

The primary objective of this part is to introduce the main logical systems that
will be used to reason about different aspects of social interactive situations.
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Part II: Logical Analysis of Rational Agency (2.5 meetings) This is the
main part of the course. The primary objective in this part is to develop concrete
answers to questions 1 & 2 discussed above. We will discuss the following 6 topics
(a few relevant papers are listed below each topic):

1. Background: Combining Modal Logics

Walter Carnielli and Marcelo Esteban Coniglio (Winter 2008 Edition), “Combin-
ing Logics”, The Stanford Encyclopedia of Philosophy , Edward N. Zalta (ed.).
(plato.stanford.edu/entries/logic-combining/)

2. Logics of Knowledge and Beliefs

Yoav Shoham and Kevin Leyton-Brown (2009). Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge University Press, Section
13.7. www.masfoundations.org

Joe Halpern (1996). Should knowledge entail belief?, Journal of Philosophical
Logic, 25:5, pp. 483-494.

3. Reasoning about Knowledge, Actions and Abilities

David Carr (1979). The Logic of Knowing How and Ability, Mind 88:351, pp.
394 - 409.

Renate Schmidt and Dmitry Tishkovsky (2008). On combinations of proposi-
tional dynamic logic and doxastic modal logics, Journal of Logic, Language and
Information. 17, pp. 109 - 129.

Johan van Benthem and Eric Pacuit (2006). The Tree of Knowledge in Action,
Proceedings of Advances of Modal Logic, pp. 87 - 106.

4. Comparing Logics of Information Flow

Johan van Benthem, Jelle Gerbrandy, Tomohiro Hoshi and Eric Pacuit (2009).
Merging Frameworks for Interaction, Journal of Philosophical Logic.

5. Entangling Knowledge, Beliefs and Preferences

Johan van Benthem, Logical dynamics of information and interaction, Book manuscript
(Chapter 8)

Stephen Morris (1996). The Logic of Belief and Belief Change: A Decision The-
oretic Approach, Journal of Economic Theory, 69, pp. 1 - 23.
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6. Planning and Intentions

Wiebe van der Hoek, Wojciech Jamroga and Michael Wooldridge (2007). Towards
a theory of intention revision, Synthese: Knowledge, Rationality and Aciton, 155,
pp. 265 - 290.

Thomas Icard, Eric Pacuit and Yoav Shoham (2009). A Dynamic Logic of Belief
and Intention, manuscript.

Part III: General Issues (0.5 meetings) Time permitting, we will conclude
with a discussion of some broader issues. In particular, we will point to some
initial investigations concerning question 3 discussed above.

Relevant Conferences & Online Resources

There are a number of online resources and conferences that address many of the
issues discussed in this course:

• www.loriweb.org: a web portal with a number of important resources (call
for papers, conference announcements, available positions, general discus-
sions, etc.)

• LORI: Workshop on Logic, Rationality and Interaction is a workshop de-
voted to many of the themes discussed in this course.(golori.org).

LORI-II will take place in Chongqing, China, October 8 - 11, 2009!

• TARK: Theoretical Aspects of Rationality and Knowledge is a bi-annual con-
ference on the interdisciplinary issues involving reasoning about rationality
and knowledge (www.tark.org)

• LOFT: Logic and the Foundations of Game and Decision Theory is a bi-
annual conference which focuses, in part, on applications of formal episte-
mology in game and decision theory.
(www.econ.ucdavis.edu/faculty/bonanno/loft.html)

• FEW: Formal Epistemology Workshop is a yearly conference aimed at gen-
eral issues in formal epistemology. (fitelson.org/few/)

• KR: Conference on the Principles of Knowledge Representation and Rea-
soning is a bi-annual conference geared towards computer scientists that
emphasizes both theoretical and practical applications. (www.kr.org)
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A A Brief Introduction to Modal Logic

These short notes are intended to supplement the lectures and introduce some of
the basic concepts of Modal Logic. The primary goal is to provide a study guide
that will complement the technical material presented during the course. There
are many textbooks that you can consult for more information. The following is
a list of some texts (this is not a complete list, but a pointer to books that I have
found particularly useful).

• Modal Logic for Open Minds by Johan van Benthem. A new textbook on
modal logic (still in draft form) provides a modern introduction to modal
logic. This book will be published sometime the end of the summer/early
next fall.

• Modal Logic by Brian Chellas. A nice introduction to modal logic though
somewhat outdated.
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• The Modal Logic entry at the Stanford Encyclopedia of Philosophy (http://
plato.stanford.edu/entries/logic-modal/). This entry was written by
James Garson and provides a nice overview of the philosophical applications
of modal logic.

There are also more advanced books that you should keep on your radar.

• Handbook of Modal Logic edited by Johan van Benthem, Patrick Blackburn
and Frank Wolter. This very extensive volume represents the current stat-
of-affairs in modal logic.

• Modal Logic by Patrick Blackburn, Maarten de Rijke and Yde Venema.
An advanced, but very accessible, textbook focusing on the main technical
results in the area.

• Dynamic Epistemic Logic by Hans van Ditmarsch, Wiebe van der Hoek and
Barteld Kooi. This text presents a number of the basic technical results
about dynamic versions of epistemic logics.

A.1 Syntax and Semantics of Modal Logic

What is a modal? A modal is anything that qualifies the truth of a sentence.
There are many ways to qualify the truth of a statement in natural language. For
example, each of the phrases below can be used to complete the sentence:
John happy.

• is necessarily

• is possibly

• is known/believed (by Ann) to be

• is permitted to be

• is obliged to be

• is now

• will be

• can do something to ensure that he is

The basic modal language is a generic formal language with unary operators that
have been used to reason about situations involving modal notions. This language
is defined as follows:
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Definition A.1 (The Basic Modal Language) Let At = {p, q, r, . . .} be a set
of sentence letters, or atomic propositions. We also include two special proposi-
tions ‘>’ and ‘⊥’ meaning ‘true’ and ‘false’ respectively. The set of well-formed
formulas of modal logic is the smallest set generated by the following grammar:

p | ¬ϕ | ϕ ∧ ψ | 2ϕ | 3ϕ

where p ∈ At. /

Examples of modal formulas include: 2⊥, 23>, p → 2(q ∧ r), and 2(p →
(q ∨3r)↔ 32p).

One language, many readings. There are many possible readings for the modal
operators ‘2’ and ‘3’. Here are some samples:

• Alethic Reading: 2ϕ means ‘ϕ is necessary’ and 3ϕ means ‘ϕ is possible’.

• Deontic Reading: 2ϕ means ‘ϕ is obligatory’ and 3ϕ means ‘ϕ is permit-
ted’. In this literature, typically ‘O’ is used instead of ‘2’ and ‘P ’ instead
of ‘3’.

• Epistemic Reading: 2ϕ means ‘ϕ is known’ and 3ϕ means ‘ϕ is consistent
with the current information’. In this literature, typically ‘K’ is used instead
of ‘2’ and ‘L’ instead of ‘3’.

• Temporal Reading: 2ϕ means ‘ϕ will always be true’ and 3ϕ means ‘ϕ
will be true at some point in the future’.

There are many interesting arguments involving modal notions. Here I will
give two examples both of which have been widely discussed by philosophers.

Example A.2 (Aristotle’s Sea Battle Argument) A general is contemplat-
ing whether or not to give an order to attack. The general reasons as follows:

1. If I give the order to attack, then, necessarily, there will be a sea battle
tomorrow

2. If not, then, necessarily, there will not be one.

3. Now, I give the order or I do not.

4. Hence, either it is necessary that there is a sea battle tomorrow or it is
necessary that none occurs.
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The conclusion is that either it is inevitable that there is a sea battle tomorrow or
it is inevitable that there is no battle. So, why should the general bother giving
the order? There are two possible formalizations of this argument corresponding
to different readings of “if A then necessarily B”:

A→ 2B
¬A→ 2¬B
A ∨ ¬A
2B ∨2¬B

2(A→ B)
2(¬A→ ¬B)
A ∨ ¬A
2B ∨2¬B

Are these two formalizations the same? If not, which argument is valid?

The second example, provided J. Forrester in 1984, involves the Deontic reading
of modal logic.

Example A.3 (The Gentle Murder Paradox) Suppose that Jones murders
Smith. Accepting the principle that ‘If Jones murders Smith, then Jones ought to
murder Smith gently’, we can argue that, in fact, Jones ought to murder Smith as
follows:

1. Jones murders Smith. (M)

2. If Jones murders Smith, then Jones ought to murder Smith gently. (M →
OG)

3. Jones ought to murder Smith gently. (OG)

4. If Jones murders Smith gently, then Jones murders Smith. (G→M)

5. If Jones ought to murder Smith gently, then Jones ought to murder Smith.
(OG→ OM)

6. Jones ought to murder Smith. (OM)

Is this argument valid? Note that reasoning from statement 4. to statement 5.
follows a general modal reasoning pattern: if ‘X → Y ’ has been established, then
we can establish ‘2X → 2Y ’.

In order to answer the questions in the examples above, we need a natural
semantics for the basic modal language.

Question A.4 Can we give a truth-table semantics for the basic modal language?
(Hint: there are only 4 possible truth-table for a unary operator. Suppose we want
2A → A to be valid (i.e., true regardless of the truth value assigned to A), but
allow A → 2A and ¬2A to be false (i.e., for each formula, there is a possible
assignment of truth values to A which makes the formulas false)).
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A semantics for the basic modal language was developed by Saul Kripke, Stag
Kanger, Jaakko Hinitkka and others in the 1960s and 1970s. Formulas are inter-
preted over graph-like structures:

Definition A.5 (Relational Structure) A Relational Structure (also called
a possible worlds model, Kripke model or a modal model) is a triple M =
〈W,R, V 〉 where W is a nonempty set (elements of W are called states), R
is a relation on W (formally, R ⊆ W × W ) and V is a valuation function
assigning truth values V (p, w) to atomic propositions p at state w (formally
V : At×W → {T, F} where At is the set of sentence letters). /

Example A.6 (A Relational/Kripke Structure) Often relational structures
are drawn instead of formally defined. For example, the following picture repre-
sents the relational structure M = 〈W,R, V 〉 where W = {w1, w2, w3, w4},

R = {(w1, w2), (w1, w3), (w1, w4), (w2, w2), (w2, w4), (w3, w4)}

and V (p, w2) = V (p, w3) = V (q, w3) = V (q, w4) = T (with all other propositional
variables assigned F at the states).

pw2

pw1 q w4

p, qw3

Formulas of the basic modal language are interpreted at states in a relational
structure.

Definition A.7 (Truth of Modal Formulas) Truth of a modal formula ϕ at
a state w in a relational structure M = 〈W,R, V 〉, denoted M, w |= ϕ is defined
inductively as follows:

1. M, w |= p iff V (p, w) = T (where p ∈ At)

2. M, w |= > and M, w 6|= ⊥

3. M, w |= ¬ϕ iff M, w 6|= ϕ
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4. M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

5. M, w |= 2ϕ iff for all v ∈ W , if wRv then M, v |= ϕ

6. M, w |= 3ϕ iff there is a v ∈ W such that wRv and M, v |= ϕ /

Two remarks about this definition. First, note that truth for the other boolean
connectives (→,∨,↔) is not given in the above definition. This is not necessary
since these connectives are definable from ‘¬’ and ‘∧’. 6 As an exercise, make
sure you can specify the truth definition in the style of the Definition above for
each of the boolean connectives not mentioned. Second, note the analogy between
‘2’ and a universal quantifier and ‘3’ and a existential quantifier.

Question A.8 Let M = 〈W,R, V 〉 be a relational model. Give the recursive
definition of a function V : WFFML → ℘(W ) so that V (ϕ) = {w ∈ W | M, w |=
ϕ} (recall that ℘(W ) = {X | X ⊆ W} is the powerset of W ).

Example A.9 To illustrate the above definition of truth of modal formula, recall
the relational structure from Example A.6:

pw2

pw1 q w4

p, qw3

• M, w3, |= 2q: w4 is the only worlds accessible from w3 and q is true at w4.

• M, w1 |= 3q: there is a state accessible from w1 (namely w3) where q is
true.

• M, w1 |= 32q: w3 is accessible from w1 and q is true in all of the worlds
accessible from w3.

• M, w4 |= 2⊥: there are no worlds accessible from w4, so any formula begin-
ning with ‘2’ will be true (this is analogous to the fact the universal sentences
are true in any first-order structure where the domain is empty). Similarly,

6For example, ϕ→ ψ can be defined as (i.e., is logically equivalent to) ¬(ϕ ∧ ¬ψ).
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any formula beginning with a ‘3’ will be false (again, this is analogous to the
fact that existential statements are false in first-order structures with empty
domains). /

For an extended discussion surrounding the interpreting modal formulas in
relational structures, see Chapter 2 of Modal Logic for Open Minds by Johan van
Benthem.

Question A.10 Consider the following relational structure.

Bw1

A w2 A w3

A

w4

B w5

B w6

1. 2A→ 22A

2. 22A→ 2A

3. 3(3A ∧3B)

4. 32⊥

5. 2(2A→ A)→ 2A

For each formula to the right, list the states where the formula is true.

A.2 Modal Validity

Definition A.11 (Modal Validity) A modal formula ϕ is valid in a rela-
tional structure M = 〈W,R, V 〉, denotedM |= ϕ, providedM, w |= ϕ for each
w ∈ W . A modal formula ϕ is valid, denoted |= ϕ, provided ϕ is valid in all
relational structures. /

In order to show that a modal formula ϕ is valid, it is enough to argue informally
that ϕ is true at an arbitrary state in an arbitrary relational structure. On the
other hand, to show a modal formula ϕ is not valid, one must provide a counter
example (i.e., a relational structure and state where ϕ is false).

Fact A.12 2ϕ↔ ¬3¬ϕ is valid.

Proof. Suppose M = 〈W,R, V 〉 is an arbitrary relational structure and w ∈ W
an arbitrary state. We will show that M, w |= 2ϕ ↔ ¬3¬ϕ. We first show
that if M, w |= 2ϕ then M, w |= ¬3¬ϕ. If M, w |= 2ϕ then for all v ∈ W , if
wRv then M, v |= ϕ. Suppose (to get a contradiction) that M, w |= 3¬ϕ. Then
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there is some v′ such that wRv′ and M, v′ |= ¬ϕ. Therefore, since wRv′ we have
M, v′ |= ϕ and M, v′ |= ¬ϕ which means M, v′ 6|= ϕ. But this is a contradiction,
so M, w 6|= 3¬ϕ. Hence, M, w |= ¬3¬ϕ.

We now show that ifM, w |= ¬3¬ϕ thenM, w |= 2ϕ. Suppose thatM, w |=
¬3¬ϕ. Then there is no state v such that wRv and M, v |= ¬ϕ. Let v be any
element of W such that wRv. Then M, w |= ϕ (since otherwise there would be
an accessible state satisfying ¬ϕ). Therefore, M, w |= 2ϕ. qed

Fact A.13 2ϕ ∧2ψ → 2(ϕ ∧ ψ) is valid.

Proof. Suppose M = 〈W,R, V 〉 is an arbitrary relational structure and w ∈ W
an arbitrary state. We will show M, w |= 2ϕ ∧ 2ψ → 2(ϕ ∧ ψ). Suppose that
M, w |= 2ϕ ∧ 2ψ. Then M, w |= 2ϕ and M, w |= 2ψ. Suppose that v ∈ W
and wRv. Then M, v |= ϕ and M, v |= ψ. Hence, M, v |= ϕ ∧ ψ. Since v is an
arbitrary state accessible from w, we have M, w |= 2(ϕ ∧ ψ). qed

Fact A.14 (3ϕ ∧3ψ)→ 3(ϕ ∧ ψ) is not valid.

Proof. We must find a relational structure that has a state where (3ϕ∧3ψ)→
3(ϕ ∧ ψ) is false. Note that without loss of generality we can assume that ϕ and
ψ are atomic propositions. Consider the following relational structure:

w1

ϕ w2 ψ w3

Call this relational structureM. We haveM, w1 |= 3ϕ∧3ψ (why?), butM, w1 6|=
3(ϕ ∧ ψ) (why?). Hence, M, w1 6|= (3ϕ ∧3ψ)→ 3(ϕ ∧ ψ). qed

Question A.15 Determine which of the following formulas valid (prove your an-
swers):

1. 2ϕ→ 3ϕ

2. 2(ϕ ∨ ¬ϕ)

3. 2(ϕ→ ψ)→ (2ϕ→ 2ψ)

4. 2ϕ→ ϕ
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5. ϕ→ 23ϕ

6. 3(ϕ ∨ ψ)→ 3ϕ ∨3ψ

We can now see why the two formalizations of Aristotle’s Sea Battle Argument
(cf. Exercise A.2) are not “equivalent”. They would be the “same” if 2(A→ B)
is (modally) equivalent to A→ 2B. That is if 2(A→ B)↔ (A→ 2B) is valid.
The following relational structure shows that this is not the case:

A,B

w1

C

w2

Here 2(A→ B) is true at w1 but A→ 2B is not true at w1 (why?). Furthermore,
the second formalization of Aristotle’s Sea Battle Argument is not valid:

2(A→ B)
2(¬A→ ¬B)
A ∨ ¬A
2B ∨2¬B

To show this, we must find a relational structure that has a state where all of the
premises are true but the conclusion (2B∨2¬B) is false. The following relational
structure does the trick (w1 satisfies all of the premises but not the conclusion):

Aw1

A,B

w2

C

w3

A.3 Definability

Question A.8 shows that we can assign to every modal formula ϕ a set of states in
a relational structure M = 〈W,R, V 〉 (i.e., the set V (ϕ) of states where ϕ is true
in M). We sometime write (ϕ)M for this set. What about the converse: given
and arbitrary set, when does a formula uniquely pick out that set?

Definition A.16 (Definable Subsets) LetM = 〈W,R, V 〉 be a relational struc-
ture. A set X ⊆ W is definable in M provided X = (ϕ)M = {w ∈ W | M, w |=
ϕ} for some modal formula ϕ. /
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Example A.17 (Defining states with modal formulas) All four of the states
in the relational structure below are uniquely defined by a modal formula:

w2

w1 w4

w3

• {w4} is defined by 2⊥
(w4 is the only “dead-end” state)

• {w3} is defined by 32⊥ ∧22⊥
(w3 can only see a “dead-end” state)

• {w2} is defined by 333>
(w2 is the only state where 3 steps can be
taken)

• {w1} is defined by 3(32⊥ ∧22⊥)
(w1 is the only state that can see w3)

Given the above observations, it is not hard to see that all subsets of W =
{w1, w2, w3, w4} are definable (why?). However, note that even in finite relational
structures, not all subsets may be definable. A problem can arise if states cannot
be distinguished by modal formulas. For example, if the reflexive arrow is dropped
in the relational structure above, then w2 and w3 cannot be distinguished by a
modal formula (there are ways to formally prove this, but see if you can informally
argue why w2 and w3 cannot be distinguished).

The next two definitions make precise what it means for two states to be
indistinguishable by a modal formula.

Definition A.18 (Modal Equivalence) Let M1 = 〈W1, R1, V1〉 and M2 =
〈W2, R2, V2〉 be two relational structures. We sayM1, w2 andM2, w2 are modally
equivalent provided

for all modal formulas ϕ, M1, w1 |= ϕ iff M2, w2 |= ϕ

We writeM1, w1 !M2, w2 ifM1, w1 andM2, w2 are modally equivalent. (Note
that it is assumed w1 ∈ W1 and w2 ∈ W2) /

Definition A.19 (Bisimulation) LetM1 = 〈W1, R1, V1〉 andM2 = 〈W2, R2, V2〉
be two relational structures. A nonempty relation Z ⊆ W1×W2 is called a bisim-
ulation provided for all w1 ∈ W1 and w2 ∈ W2, if w1Zw2 then

1. (atomic harmony) For all p ∈ At, V1(w1, p) = V2(w2, p).

2. (zig) If w1R1v1 then there is a v2 ∈ W2 such that w2R2v2 and v1Zv2.
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3. (zag) If w2R2v2 then there is a v1 ∈ W1 such that w1R1v1 and v1Zv2.

We write M1, w1 ↔M2, w2 if there is a bisimulation relating w1 with w2. /

Definition A.18 and A.19 provide two concrete ways to answer the question:
when are two states the same? The following questions are straightforward conse-
quences of the relevant definitions.

Question A.20 1. Prove ! and ↔ are equivalence relations.

2. Prove that if X is a definable subset of M = 〈W,R, V 〉, then X is closed
under the ! relation (if w ∈ X and M, w !M, v then v ∈ X).

3. Prove that there is a largest bisimulation: given {Zi | i ∈ I} a set of bisim-
ulations relating the relational structures M1 = 〈W1, R1, V1〉 and M2 =
〈W2, R2, V2〉 (i.e., for each i ∈ I, Zi ⊆ W1 ×W2 satisfies Definition A.19),
show the relation Z =

⋃
i∈I Zi is a bisimulation.

Example A.21 (Bisimulation) The dashed lines is a bisimulation between the
following two relational structures (for simplicity, we do assume that all atomic
propositions are false):

w1

w2

w3

w4

w5

v1

v2

v3

On the other hand, there is no bisimulation relating the state x and y in the
following two relational structures:

x

y

y

y1

y2

y3
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Using Lemma A.22 below, we can prove that there is no bisimulation relating x
and y. We first note that 2(32⊥ ∨ 2⊥) is true at state x but not true at state
y. Then by Lemma A.22, x and y cannot be bisimilar.

Lemma A.22 (Modal Invariance Lemma) Suppose M1 = 〈W1, R1, V1〉 and
M2 = 〈W2, R2, V2〉 are relational structures. For all w ∈ W1 and v ∈ W2, if
M1, w ↔M2, v then M1, w !M2, v.

Proof. The proof can be found on pages 27 and 28 in Modal Logic for Open
Minds. qed

Lemma A.23 Suppose M1 = 〈W1, R1, V1〉 and M2 = 〈W2, R2, V2〉 are finite
relational structures. If M1, w1 !M2, w2 then M1, w1 ↔M2, w2.

Proof. The proof can be found on page 29 in Modal Logic for Open Minds. qed

The modal invariance Lemma (Lemma A.22) can be used to prove what can
and cannot be expressed in the basic modal language.

Fact A.24 Let M = 〈W,R, V 〉 be a relational structure. The universal operator
is a unary operator Aϕ defined as follows:

M, w |= Aϕ iff for all v ∈ W , M, v |= ϕ

The universal operator A is not definable in the basic modal language.

Proof. Suppose that the universal operator is definable in the basic modal lan-
guage. Then there is a basic modal formula α(·) such7 that for any formula ϕ
and any relational structure M with state w, we have M, w |= Aϕ iff M, w |=
α(ϕ). Consider the relational structure M = 〈W,R, V 〉 with W = {w1, w2},
R = {(w1, w2)} and V (w1, p) = V (w2, p) = T . Note that M, w1 |= Ap. Since the
universal operator is assumed to be defined by α(·), we must haveM, w1 |= α(p).
Consider the relational structure M′ = 〈W ′, R′, V ′〉 with W ′ = {v1, v2, v3}, R′ =
{(v1, v2), (v3, v1)} and V ′(v1, p) = V ′(v2, p) = T . Note that Z = {(w1, v2), (w2, v2)}
is a bismulation relating w1 and v1 (i.e.,M, w1 ↔M′, v1). These relational struc-
tures and bisimulation is pictured below:

pw1

pw2

p v1

p v2 p v3

7The notation α(·) means that α is a basic modal formula with “free slots” such that α(ϕ)
is a well formed modal formula with ϕ plugged into the free slots.

22



By Lemma A.22,M, w1 !M′, v1. Therefore, since α(p) is a formula of the basic
modal language and M, w1 |= α(p), we have M′, v1 |= α(p). Since α(p) defines
the universal operator, M′, v1 |= Ap, which is a contradiction. Hence, A is not
definable in the basic modal language. qed

Fact A.25 Let M = 〈W,R, V 〉 be a relational structure. Define the “exists two”
operator 32ϕ as follows:

M, w |= 32ϕ iff there is v1, v2 ∈ W such that v1 6= v2, M, v1 |= ϕ and M, v2 |= ϕ

The exist two 32 operator is not definable in the basic modal language.

Proof. Suppose that the 32 is definable in the basic modal language. Then there
is a basic modal formula α(·) such that for any formula ϕ and any relational struc-
ture M with state w, we have M, w |= 32ϕ iff M, w |= α(ϕ). Consider the rela-
tional structure M = 〈W,R, V 〉 with W = {w1, w2, w3}, R = {(w1, w2), (w1, w3)}
and V (w2, p) = V (w3, p) = T . Note that M, w1 |= 32p. Since 32 is assumed to
be defined by α(·), we must haveM, w1 |= α(p). Consider the relational structure
M′ = 〈W ′, R′, V ′〉 with W ′ = {v1, v2}, R′ = {(v1, v2)} and V ′(v2, p) = T . Note
that Z = {(w1, v2)} is a bismulation relating w1 and v1 (i.e., M, w1 ↔ M′, v1).
By Lemma A.22,M, w1 !M′, v1. Therefore, since α(p) is a formula of the basic
modal language and M, w1 |= α(p), we have M′, v1 |= α(p). Since α(·) defines
32, M′, v1 |= 32p, which is a contradiction. Hence, 32 is not definable in the
basic modal language. qed

A.3.1 Defining Classes of Structures

The basic modal language can also be used to define classes of structures.

Definition A.26 (Frame) A pair 〈W,R〉 with W a nonempty set of states and
R ⊆ W ×W is called a frame. Given a frame F = 〈W,R〉, we say the model
M is based on the frame F = 〈W,R〉 if M = 〈W,R, V 〉 for some valuation
function V . /

Definition A.27 (Frame Validity) Given a frame F = 〈W,R〉, a modal for-
mula ϕ is valid on F , denoted F |= ϕ, providedM |= ϕ for all modelsM based
on F . /

Suppose that P is a property of relations (eg., reflexivity or transitivity). We
say a frame F = 〈W,R〉 has property P provided R has property P . For example,

• F = 〈W,R〉 is called a reflexive frame provided R is reflexive, i.e., for all
w ∈ W , wRw.
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• F = 〈W,R〉 is called a transitive frame provided R is transitive, i.e., for
all w, x, v ∈ W , if wRx and xRv then wRv.

Definition A.28 (Defining a Class of Frames) A modal formula ϕ defines
the class of frames with property P provided for all frames F , F |= ϕ iff F
has property P . /

Remark A.29 (N) ote that if F |= ϕ where ϕ is some modal formula, then
F |= ϕ∗ where ϕ∗ is any substitution instance of ϕ. That is, ϕ∗ is obtained
by replacing sentence letters in ϕ with modal formulas. In particular, this means,
for example, that in order to show that F 6|= 2ϕ → it is enough to show that
F 6|= 2p→ p where p is a sentence letter. (This will be used in the proofs below).

Fact A.30 2ϕ→ ϕ defines the class of reflexive frames.

Proof. We must show for any frame F , F |= 2ϕ→ ϕ iff F is reflexive.

(⇐) Suppose that F = 〈W,R〉 is reflexive and let M = 〈W,R, V 〉 be any model
based on F . Given w ∈ W , we must show M, w |= 2ϕ → ϕ. Suppose that
M, w |= 2ϕ. Then for all v ∈ W , if wRv thenM, v |= ϕ. Since R is reflexive, we
have wRw. Hence, M, w |= ϕ. Therefore, M, w |= 2ϕ→ ϕ, as desired.

(⇒) We argue by contraposition. Suppose that F is not reflexive. We must show
F 6|= 2ϕ → ϕ. By the above Remark, it is enough to show F 6|= 2p → p for
some sentence letter p. Since F is not reflexive, there is a state w ∈ W such that
it is not the case that wRw. Consider the model M = 〈W,R, V 〉 based on F
with V (v, p) = T for all v ∈ W such that v 6= w. Then M, w |= 2p since, by
assumption, for all v ∈ W if wRv, then v 6= w and so V (v, p) = T . Also, notice
that by the definition of V , M, w 6|= p. Therefore, M, w |= 2p ∧ ¬p, and so,
F 6|= 2p→ p. qed

Fact A.31 2ϕ→ 22ϕ defines the class of transitive frames.

Proof. We must show for any frame F , F |= 2ϕ→ 22ϕ iff F is transitive.

(⇐) Suppose that F = 〈W,R〉 is transitive and let M = 〈W,R, V 〉 be any model
based on F . Given w ∈ W , we must show M, w |= 2ϕ → 22ϕ. Suppose that
M, w |= 2ϕ. We must show M, w |= 22ϕ. Suppose that v ∈ W and wRv. We
must show M, v |= 2ϕ. To that end, let x ∈ W be any state with vRx. Since
R is transitive and wRv and vRx, we have wRx. Since M, w |= 2ϕ, we have
M, x |= ϕ. Therefore, since x is an arbitrary state accessible from v,M, v |= 2ϕ.
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Hence, M, w |= 22ϕ, and so, M, w |= 2ϕ→ 22ϕ, as desired.

(⇒) We argue by contraposition. Suppose that F is not transitive. We must show
F 6|= 2ϕ→ 22ϕ. By the above Remark, it is enough to show F 6|= 2p→ 22p for
some sentence letter p. Since F is not transitive, there are states w, v, x ∈ W with
wRv and vRx but it is not the case that wRx. Consider the modelM = 〈W,R, V 〉
based on F with V (y, p) = T for all y ∈ W such that y 6= x. Since M, x 6|= p
and wRv and vRx, we have M, w 6|= 22p. Furthermore, M, w |= 2p since the
only state where p is false is x and it is assumed that it is not the case that wRx.
Therefore, M, w |= 2p ∧ ¬22p, and so, F 6|= 2p→ 22p, as desired. qed

Question A.32 Determine which class of frames are defined by the following
modal formulas (prove your answer).

1. 2ϕ→ 3ϕ

2. 3ϕ→ 2ϕ

3. ϕ→ 23ϕ

4. 2(2ϕ→ ϕ)

5. 32ϕ→ 23ϕ

A.4 The Minimal Modal Logic

For a complete discussion of this material, consult Chapter 5 of Modal Logic for
Open Minds by Johan van Benthem.

Definition A.33 (Substitution) A substitution is a function from sentence
letters to well formed modal formulas (i.e., σ : At → WFFML). We extend a
substitution σ to all formulas ϕ by recursion as follows (we write ϕσ for σ(ϕ)):

1. σ(⊥) = ⊥

2. σ(¬ϕ) = ¬σ(ϕ)

3. σ(ϕ ∧ ψ) = σ(ϕ) ∧ σ(ψ)

4. σ(2ϕ) = 2σ(ϕ)

5. σ(3ϕ) = 3σ(ϕ) /
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For example, if σ(p) = 23(p ∧ q) and σ(q) = p ∧2q then

(2(p ∧ q)→ 2p)σ = 2((23(p ∧ q)) ∧ (p ∧2q))→ 2(23(p ∧ q))

Definition A.34 (Tautology) A modal formula ϕ is called a (propositional)
tautology if ϕ = (α)σ where σ is a substition, α is a formula of propositional
logic and α is a tautology. /

For example, 2p → (3(p ∧ q) → 2p) is a tautology because a → (b → a) is a
tautology in the language of propositional logic and

(a→ (b→ a))σ = 2p→ (3(p ∧ q)→ 2p)

where σ(a) = 2p and σ(b) = 3(p ∧ q).

Definition A.35 (Modal Deduction) A modal deduction is a finite sequence
of formulas 〈α1, . . . , αn〉 where for each i ≤ n either

1. αi is a tautology

2. αi is a substitution instance of 2(p→ q)→ (2p→ 2q)

3. αi is of the form 2αj for some j < i

4. αi follows by modus ponens from earlier formulas (i.e., there is j, k < i such
that αk is of the form αj → αi).

We write `K ϕ if there is a deduction containing ϕ. /

The formula in item 2. above is called the K axiom and the application of item
3. is called the rule of necessitation.

Fact A.36 If `K ϕ→ ψ then `K 2ϕ→ 2ψ

Proof.

1. ϕ→ ψ assumption
2. 2(ϕ→ ψ) Necessitation 1
3. 2(ϕ→ ψ)→ (2ϕ→ 2ψ) Substitution instance of K
4. 2ϕ→ 2ψ MP 2,3

adfasd qed
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Fact A.37 `K 2(ϕ ∧ ψ)→ (2ϕ ∧2ψ)

Proof.

1. ϕ ∧ ψ → ϕ tautology
2. 2((ϕ ∧ ψ)→ ϕ) Necessitation 1
3. 2((ϕ ∧ ψ)→ ϕ)→ (2(ϕ ∧ ψ)→ 2ϕ) Substitution instance of K
4. 2(ϕ ∧ ψ)→ 2ϕ MP 2,3
5. ϕ ∧ ψ → ψ tautology
6. 2((ϕ ∧ ψ)→ ψ) Necessitation 5
7. 2((ϕ ∧ ψ)→ ϕ)→ (2(ϕ ∧ ψ)→ 2ψ) Substitution instance of K
8. 2(ϕ ∧ ψ)→ 2ψ MP 5,6
9. (a→ b)→ ((a→ c)→ (a→ (b ∧ c))) tautology (a := 2(ϕ ∧ ψ),

b := 2ϕ, c := 2ψ)
10. (a→ c)→ (a→ (b ∧ c)) MP 4,9
11. 2(ϕ ∧ ψ)→ 2ϕ ∧2ψ MP 8,10

adfasd qed

Definition A.38 (Modal Deduction with Assumptions) Let Σ be a set of
modal formulas. A modal deduction of ϕ from Σ, denoted Σ `K ϕ is a finite
sequence of formulas 〈α1, . . . , αn〉 where for each i ≤ n either

1. αi is a tautology

2. αi ∈ Σ

3. αi is a substitution instance of 2(p→ q)→ (2p→ 2q)

4. αi is of the form 2αj for some j < i and `K αj

5. αi follows by modus ponens from earlier formulas (i.e., there is j, k < i such
that αk is of the form αj → αi). /

Remark A.39 (Applying Necessitation) Note that the side condition in item
4. in the above definition is crucial. Without it, one application of Necessitation
shows that {p} `K 2p. Using the general fact (cf. Exercise #4, Section 1.2 of
Enderton) that Σ;α `K β implie Σ `K α→ β, we can conclude that `K p→ 2p.
But, clearly p→ 2p cannot be a theorem (why?).

Definition A.40 (Logical Consequence) Suppose that Σ is a set of modal for-
mulas. We say ϕ is a logical consequence of Σ, denoted Σ |= ϕ provided for all
frames F , if F |= α for each α ∈ Σ, then F |= ϕ. /
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Theorem A.41 (Soundness) If Σ `K ϕ then Σ |= ϕ.

Proof. The proof is by induction on the length of derivations. qed

Theorem A.42 (Completeness) If Σ |= ϕ then Σ `K ϕ.

Proof. See any textbook on modal logic for a proof. qed

Remark A.43 (Alternative Statement of Soundness and Completeness)
Suppose that Σ is a set of modal formulas. Define the minimal modal logic as
the smallest set ΛK(Σ) of modal formulas extending Σ that (1) contains all tau-
tologies, (2) contains the formula 2(p → q) → (2p → 2q), (3) is closed under
substitutions, (4) is closed under the Necessitation rule (i.e., if ϕ ∈ ΛK is derivable
without premises – `K ϕ – then 2ϕ ∈ ΛK) and (4) is closed under Modus Ponens.
Suppose F(Σ) = {ϕ | Σ |= ϕ}. Then, soundness and completeness states that
ΛK(Σ) = F(Σ).
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