Problem Set 4 Introduction to Modal Logic

Institute for Logic, Language and Computation Universiteit van Amsterdam

Due October 5, 2005

- 1. Give a concrete example of a model \mathfrak{M} and a filtration \mathfrak{M}^f such that \mathfrak{M} is transitive but \mathfrak{M}^f is not.
- 2. Prove Lemma 2.42 on pg. 81: Let \mathfrak{M} be a model, Σ a subformula closed set of formulas, and W_{Σ} the set of equivalence classes induced on \mathfrak{M} by $\longleftrightarrow_{\Sigma}$. Let R^t be the binary relation on W_{Σ} defined by:

 $|w|R^t|v|$ iff for all ϕ , if $\Diamond \phi \in \Sigma$ and $\mathfrak{M}, v \Vdash \phi \lor \Diamond \phi$ then $\mathfrak{M}, w \Vdash \Diamond \phi$

3. Suppose that we work in a modal language containing only a finite number of propositional variables. Let \mathfrak{M} and \mathfrak{M}' be models for this language. Prove that for every $w \in W$ and $w' \in W'$, if w and w' agree on all formulas of degree at most n, then w and w' are n-bisimular.