Problem Set 5 Introduction to Modal Logic Institute for Logic, Language and Computation Universiteit van Amsterdam

Due October 12, 2005

- 1. Is each one of the formulas P_1, P_2 and P_3 given below equivalent to the standard translation of some modal formula (in the basic modal language)? If you say yes, show a concrete formula (and its translation) justifying your claim. If you say no, give a short but rigorous proof.
 - (a) $\forall y(\neg xRy)$
 - (b) $\forall y(xRy \wedge yRx)$
 - (c) $\exists y(xRy \land \exists z(yRz \land P_1(x) \land P_2(z)))$
- 2. Let Φ be a sete of atomic propositions. A formula of \mathcal{L}^* has the following syntactic form:

$$\phi := p \mid \bot \mid \neg \phi \mid \phi \lor \psi \mid \Diamond \phi \mid \Diamond^* \phi$$

Models for \mathcal{L}^* are interpreted in standard Kripke models $\mathfrak{M} = \langle W, R, V \rangle$. Truth is defined as usual. We only give the definition of truth of $\Diamond^* \phi$:

$$\mathfrak{M}, w \Vdash \Diamond^* \phi \text{ iff } \exists v, \ w R^* v \text{ and } \mathfrak{M}, v \Vdash \phi$$

where R^* is the reflexive transitive closure of R. Prove that \mathcal{L}^* satisfies the Finite Model Property. **Hint:** Given a formula ϕ , consider the set of formulas $CL(\phi)$, the smallest subformulas closed set containing ϕ and such that if $\Diamond^* \psi \in CL(\phi)$ then $\Diamond \Diamond^* \psi \in CL(\phi)$

3. Let Z be a bisimulation that links $\mathfrak{M} = \langle W, \{R_a \mid a \in P\}, V \rangle$ and $\mathfrak{M}' = \langle W', \{R'_a \mid a \in P\}, V' \rangle$, where P is a set of atomic programs. Show that Z is a bisimulation for test-free PDL (PDL without the test operator). That is, show Z is a bisimulation linking $\mathfrak{M} = \langle W, \{R_\alpha\}, V \rangle$ and $\mathfrak{M}' = \langle W', \{R'_\alpha\}, V' \rangle$, where α is a program generated by the set of atomic programs P.