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1. Is each one of the formulas P1, P2 and P3 given below equivalent to the
standard translation of some modal formula (in the basic modal language)?
If you say yes, show a concrete formula (and its translation) justifying your
claim. If you say no, give a short but rigorous proof.

(a) ∀y(¬xRy)
(b) ∀y(xRy ∧ yRx)
(c) ∃y(xRy ∧ ∃z(yRz ∧ P1(x) ∧ P2(z)))

2. Let Φ be a sete of atomic propositions. A formula of L∗ has the following
syntactic form:

φ := p | ⊥ | ¬φ | φ ∨ ψ | ♦φ | ♦∗φ

Models for L∗ are interpreted in standard Kripke models M = 〈W,R, V 〉.
Truth is defined as usual. We only give the definition of truth of ♦∗φ:

M, w 
 ♦∗φ iff ∃v, wR∗v and M, v 
 φ

where R∗ is the reflexive transitive closure of R. Prove that L∗ satisfies
the Finite Model Property. Hint: Given a formula φ, consider the set of
formulas CL(φ), the smallest subformulas closed set containing φ and such
that if ♦∗ψ ∈ CL(φ) then ♦♦∗ψ ∈ CL(φ)

3. Let Z be a bisimulation that links M = 〈W, {Ra | a ∈ P}, V 〉 and M′ =
〈W ′, {R′

a | a ∈ P}, V ′〉, where P is a set of atomic programs. Show
that Z is a bisimulation for test-free PDL (PDL without the test opera-
tor). That is, show Z is a bisimulation linking M = 〈W, {Rα}, V 〉 and
M′ = 〈W ′, {R′

α}, V ′〉, where α is a program generated by the set of atomic
programs P .


