Practice Problems 1 Introduction to Modal Logic

Institute for Logic, Language and Computation Universiteit van Amsterdam

- 1. Prove that $\frac{\phi \to \psi}{\Box \phi \to \Box \psi}$ is a valid rule of inference (in the class of all frames).
 - Prove that if $\vdash_{\mathbf{K}} \phi \to \psi$, then $\vdash_{\mathbf{K}} \Box \phi \to \Box \psi$
- 2. Prove that $\frac{\phi \to \psi}{\Diamond \phi \to \Diamond \psi}$ is a valid rule of inference (in the class of all frames).
 - Prove if $\vdash_{\mathbf{K}} \phi \to \psi$ then $\vdash_{\mathbf{K}} \Diamond \phi \to \Diamond \psi$.
 - Try proving if $\vdash_{\mathbf{K}} \phi \to \psi$ then $\vdash_{\mathbf{K}} \Diamond \phi \to \Diamond \psi$ without using the Dual axiom **Remember**, $\Box(\phi \to \psi) \to (\Box \phi \to \Box \psi)$ is short for $\neg \Diamond \neg (\phi \to \psi) \to (\neg \Diamond \neg \phi \to \neg \Diamond \neg \psi)$.
- 3. Prove $\vdash_{\mathbf{K}} \Box(\phi \land \psi) \leftrightarrow (\Box \phi \land \Box \psi)$
- 4. Prove a general substitution theorem:

If
$$\vdash_{\mathbf{K}} \phi \leftrightarrow \psi$$
 then $\vdash_{\mathbf{K}} \Theta \leftrightarrow \Theta'$

where Θ' is Θ with every occurence of ϕ replaced by ψ .

- 5. The axiom system **K4** is obtained by adding the axiom $\Diamond \Diamond p \to \Diamond p$ to **K** and **S4** is **K4** with the additional axiom $p \to \Diamond p$.
 - Show that $\not\vdash_{S4} p \to \Box \Diamond p$ (Hint: find a class of frames for which S4 is sound).
 - The axiom system S5 is S4 plus the axiom $p \to \Box \Diamond p$. Show that $\vdash_{S5} \Diamond p \to \Box \Diamond p$. The following is a sketch of the derivation.
 - (a) $p \to \Box \Diamond p$ (Axiom)
 - (b) $\Diamond p \to \Box \Diamond \Diamond p$ (Substitution replace p with $\Diamond p$)
 - (c) $\Diamond \Diamond p \to \Diamond p$ (Axiom)
 - (d) $\Box \Diamond \Diamond p \to \Box \Diamond p$ (Rule of inference from 1.)
 - (e) $\Diamond p \to \Box \Diamond p$ (Propositional Reasoning using b,d)

• If $\Box \phi$ is interpreted as "some agent knows ϕ ", what is the intended interpretation of $\Diamond p \to \Box \Diamond p$ (it may be easier to write this formula as $\neg \Box p \to \Box \neg \Box p$).