
Problem Set 4
Some Comments on Homework 6
Institute for Logic, Language and Computation

Universiteit van Amsterdam

First some comments and definitions. Let f : N → N be any function (partial or
total). Recall that f(x) ↓ means that f is defined on x, i.e., f(x) ∈ N. Define
the following sets (called the domain and range of f respectively), dom(f) =
{x | f(x) ↓} and ran(f) = {f(x) | f(x) ↓}. Now f is p.c. provided f is can be
generated from the partial recursion operations and the µ operator. The function
f is recursive if f is total and p.c..

If f is recursive, then (using the Church-Turing Thesis) there is an algorithm
(Turing machine, URM machine, etc.), call it F , such that on input n, F halts
and outputs f(n). Of course, f being recursive does not, in general, mean that
ran(f) is recursive. We have y ∈ ran(f) provided there is an n such that f(n) ↓
and y = f(n). The algorithm F can be used to enumerate all such n, but cannot
be used to determine for any given y whether or not y ∈ ran(f). This is, in part,
why we say ran(f) is a c.e. set.

First of all, recall that a set A ⊆ N is recursive provided χA (the charactersitic
function of A) is a recursive function.

Definition 1 g dominates f if for some n0 ∈ N, if n > n0 then g(n) ≥ f(n)

We will make use of the following lemma. Recall that a function f : N → N is
increasing if f(n) < f(n+ 1) for all n ∈ N.

Lemma 2 (Cooper, Example 5.1.9, pg. 72) A is recursive iff it is the range

of an increasing recursive function.

Lemma 3 Suppose that g : N → N is a recursive 1-1 function and ran(g) =
{g(x) | x ∈ N} is recursive. Then the range of any recursive function f that

dominates g is recursive.

Proof Suppose that g : N → N is a recursive 1-1 function and ran(g) = {f(x) | x ∈
N} is recursive. Suppose that f dominates g. We must show ran(f) is recursive.
Since f dominates g, there is an n0 ∈ N such that for each n > n0, f(n) ≥ g(n).
Since ran(g) is recursive, there is a recursive increasing function r such that
ran(g) = ran(r). Intuitively, this means that ran(g) can be enumerated in in-
creasing order. Define the following sets. Let N = {0, 1, . . . , n0} and for each

y ∈ N, Gy = {y
′ | y′ ≤ y and y′ ∈ ran(r)}. Note that for each y ∈ N, Gy is finite

(this follows from the fact that r is increasing). Now g−1[Gy] = {x | g(x) ∈ Gy}
is also recursive. This follows since g is 1-1.1 Both N and g−1[Gy] are finite com-
putable sets and since f is recursive, f [N ∪g−1[Gy]] = {f(x) | x ∈ N ∪g

−1[Gy]} is
also recursive (the algorithm is obvious). For each y ∈ N say Fy = f [N ∪g−1[Gy]].
Now, for each y ∈ N, there is an algorithm to construct Fy (the algorithm is evi-
dent from the above discussion). The result will follow from the following claim:

Claim For each y ∈ N, y ∈ Fy iff y ∈ ran(f).

Proof (of claim) The left to right direction is obvious. Suppose that y ∈ ran(f)
and y 6∈ Fy. Then there is an x ∈ N such that f(x) = y. Since y 6∈ Fy, x 6∈ N ,
so x > n0. Furthermore since, y 6∈ Fy, x 6∈ g−1[Gy] = {x′ | g(x′) ≤ y}. Note
that y ∈ ran(g), otherwise we can derive a contradiction since y ∈ ran(f) and
f dominates g . Therefore, g(x) > y. Hence, since x > n0 and f dominates g,
f(x) ≥ g(x). Putting everything together, we have y = f(x) ≥ g(x) > y, which
is a contradiction.

¤ (of claim)

Thus the above claims show that for each n ∈ N

χran(f)(n) =

{

1 n ∈ Fn

0 n 6∈ Fn

Since Fn can be compute for each n and n ∈ Fn is recursive, ran(f) is recursive.

¤

1The following algorithm will compute this set. Let Pg be the algorithm that computes g.
For each y′ ∈ Gy, run Pg on input 0, 1, . . . until Pg outputs y′. Since y′ ∈ ran(g) we know that
Pg will eventually halt on an x where g(x) = y′. Furthermore, since g is 1-1, such an x is the
unique x such that g(x) = y′.

