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The Basic Problem of Belief Revision

Recall:

Belief recognizes belief, disbelief, and suspense.

Belief observes logical norms of logical closure and consistency.

We then ask:

Question: How ought a rational agent incorporate belief contravening
information into a belief state?

Problem: Logical considerations alone are insufficient to answer this
question!

So the really interesting question is:

What extralogical factors serve to determine what beliefs to give up
and what beliefs to retain?
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Quine’s Two Dogmas

In his “Two Dogmas,” Quine discusses belief revision.

Belief revision is a matter of choice, and the choices are to be made in
such a way that:
(a) The resulting theory squares with the experience;
(b) It is simple; and
(c) The choices disturb the original theory as little as possible.

The Guiding Idea of research in belief revision :
(1) When accepting a new piece of information, an agent should aim

at a minimal change of his old beliefs.
(2) If there are different ways to effect a belief change, the agent

should give up those beliefs which are least entrenched.
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Reference.

“Belief Revision.” A.P. Pedersen & H. Arló-Costa. In L. Horsten and R.
Pettigrew, editors, Continuum Companion to Philosophical Logic.
Continuum Press, 2011.
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Three Epistemic Changes

In the AGM framework, an agent’s belief state is represented by a
logically closed set of sentences K , called a belief set.

(i) In expansion, a sentence φ is added to a belief set K to obtain an
expanded belief set K + φ.

(ii) In revision, a sentence φ is added to a belief set K to obtain a
revised belief set K ∗ φ in a way that preserves logical consistency.

(iii) In contraction, a sentence φ is removed from K to obtain a
contracted belief set K −. φ that does not include φ.

Revision can be reduced to contraction via the so-called Levi identity,
according to which the revision of a belief set K with a sentence φ is
identical to the contraction K −. ¬φ expanded by φ:

K ∗ φ = (K −. ¬φ) + φ.
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Remainder Sets

Definition
Let K be a collection of formulae and α be a formula. The α-remainder
set of K , K⊥α, is the collection of subsets Γ of For(L) such that:

(i) Γ ⊆ K ;
(ii) α /∈ Cn(Γ);
(iii) There is no set ∆ such that Γ ⊂ ∆ ⊆ K and α /∈ Cn(∆).
A member of K⊥α is called an α-remainder of K . We let
K⊥L := {K⊥α : α ∈ For(L)}.

Example. Let L = {p,q}, Cn = Cn0, and K = Cn({p,q}) Identify:

K⊥(p ∧ q)

K⊥p
K⊥(q → p)
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K⊥(p ∧ q) = {Cn({p ↔ q}),Cn({p}),Cn({q})}
K⊥p = {Cn({p ↔ q}),Cn({q})}
K⊥(q → p) = {Cn({q})}.

>

q → p p ∨ q p → q

qp p ↔ q

p ∧ q
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Properties of Remainder Sets

Definition
Let K be a belief set and α be a formula. The α-remainder set of K ,
K⊥α, is the collection of subsets Γ of For(L) such that:

(i) Γ ⊆ K ;
(ii) α /∈ Cn(Γ);
(iii) There is no set ∆ such that Γ ⊂ ∆ ⊆ K and α /∈ Cn(∆).
A member of K⊥α is called an α-remainder of K . We let
K⊥L := {K⊥α : α ∈ For(L)}.

Some important properties:
(a) K⊥α = {K} if and only if α /∈ Cn(K );
(b) K⊥α = ∅ if and only if α ∈ Cn(∅).

The Upper Bound Property:
(c) If Γ ⊆ K and α /∈ Cn(Γ), then there is some ∆ such that

Γ ⊆ ∆ ∈ K⊥α.
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Selection Functions

Definition
Let K be a belief set. A selection function for K is a function γ on K⊥L
such that for all formulae α:

(i) If K⊥α 6= ∅, then:
(a) γ(K⊥α) ⊆ K⊥α, and
(b) γ(K⊥α) 6= ∅;

(ii) If K⊥α = ∅, then γ(K⊥α) = {K}.

Example.
K⊥(p ∧ q) = {Cn({p ↔ q}),Cn({p}),Cn({q})}
K⊥p = {Cn({p ↔ q}),Cn({q})}

Consider:
γ(K⊥(p ∧ q)) = {Cn({p})}
γ(K⊥p) = {Cn({p ↔ q}),Cn({q})}
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Partial Meet Contraction

Definition
Let K be a set of formulae. A function −. on For(L) is a partial meet
contraction for K if there is a selection function γ for K such that for all
formulae α:

K −. α =
⋂
γ(K⊥α).

Example.
K⊥(p ∧ q) = {Cn({p ↔ q}),Cn({p}),Cn({q})}
K⊥p = {Cn({p ↔ q}),Cn({q})}

Consider:
γ(K⊥(p ∧ q)) = {Cn({p})}
γ(K⊥p) = {Cn({p ↔ q}),Cn({q})}

So:
K −. (p ∧ q) =

⋂
γ(K⊥p ∧ q) = Cn({p})

K −. p = γ(K⊥p) = Cn({q})
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Two limiting cases of partial meet contraction are of special interest:

(i) γ selects exactly one element of K⊥α (maxichoice contraction);
(ii) γ selects the entire set K⊥α (full meet contraction).

So we have:

(i) K −. α = {Γ} for some Γ ∈ K⊥α;
(ii) K −. α =

⋂
K⊥α.
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Contraction Postulates

The approach in question concerns itself with not only providing
semantic characterizations of belief change but also supplying
postulates belief formation operators ought to obey.

The primary logical goal of this approach is a representation result for
a set of compelling rationality postulates.

(K −. 1) K −. α = Cn(K −. α). (Closure)
(K −. 2) K −. α ⊆ K . (Inclusion)
(K −. 3) If α /∈ K or α ∈ Cn(∅), then K −. α = K . (Vacuity)
(K −. 4) If α /∈ Cn(∅), then α /∈ K −. α. (Success)
(K −. 5) If Cn({α}) = Cn({β}), then K −. α = K −. β . (Extensionality)
(K −. 6) K ⊆ Cn((K −. α) ∪ {α}). (Recovery)

These are the basic AGM postulates.

Recovery is the most controversial postulate from the foregoing list.
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Problems with Recovery

Researchers have offered various counterexamples to Recovery.

Example (Hansson 1991)
While reading a book about Cleopatra I learned that she had both a son and
a daughter. I therefore believe both that Cleopatra had a son (s) and
Cleopatra had a daughter (d). Later I learn from a well-informed friend that
the book in question is just a historical novel. I accordingly contract my belief
that Cleopatra had a child (s ∨ d). However, shortly thereafter I learn from a
reliable source that in fact Cleopatra had a child. I thereby reintroduce s ∨ d
to my collection of beliefs without also returning either s or d .

(K −. 6) K ⊆ Cn((K −. α) ∪ {α}). (Recovery)
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Another proposed counterexample:

Example (Hansson 1996)
I believed both that George is a criminal (c) and George is a mass murderer
(m). Upon receiving certain information I am induced to retract my belief set
K by my belief that George is a criminal (c). Of course, I therefore retract my
belief set by my belief that George is a mass murderer (m). Later I learn that
in fact George is a shoplifter (s), so I expand my contracted belief set K −. c
by s to obtain (K −. c) + s. As George’s being a shoplifter (s) entails his being
a criminal (c), (K −. c) + c is a subset of (K −. c) + s. Yet by Recovery it
follows that K ⊆ (K −. c) + c, so m is a member of the expanded belief set
(K −. c) + s. But I do not believe that George is a mass murdered (m).

(K −. 6) K ⊆ Cn((K −. α) ∪ {α}). (Recovery)

Arthur Paul Pedersen (CMU) Logic and Artificial Intelligence October 19, 2011 14 / 31



While Gärdenfors (1982) contends that Recovery is a reasonable
principle, Makinson expresses doubts about Recovery (1987) and at
the same time defends its use in certain contexts (1997).

Makinson (1997) argues that the foregoing examples are persuasive
only as a result of tacitly adding to the theory of contraction a
justificatory structure that is not formally represented.

For example, Makinson claims that in the second example we are
inclined to take for granted that m ∨ ¬s is in the belief set only because
m is there. Makinson concludes:

As soon as contraction makes use of the notion ‘y is believed only because
x,’ we run into counterexamples to recovery, like those of Cleopatra and
[the shoplifter]. But when a theory is ‘naked,’ i.e. as a bare set A = Cn(A)
of statements closed under consequence, then recovery appears to be free
of intuitive counterexamples (Makinson 1997, p. 478).

Thus Makinson seemingly argues that Recovery can fail only in cases
in which some justificatory structure is added to the belief set and used
to determine the content of a contraction.
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Relational Partial Meet Contraction and Supplementary Postulates

Definition

Let K be a belief set. A function −. on For(L) is a relational partial meet
contraction for K if there is a selection function γ for K and a binary
relation � on K⊥L such that for every formula α:

(i) K −. α =
⋂
γ(K⊥α);

(ii) If K⊥α 6= ∅, then γ(K⊥α) = {Γ ∈ K⊥α : Λ � Γ for all Λ ∈ K⊥α}.
If such a relation � is in addition transitive, then we call such −.

transitively relational.

This semantic requirement is reflected in two supplementary
postulates:

(K −. 7) (K −. α) ∩ (K −. β) ⊆ K −. (α ∧ β). (Overlap)
(K −. 8) If α /∈ K −. (α ∧ β), then K −. (α ∧ β) ⊆ K −. α. (Inclusion)
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Representation Theorem
Recall the basic and supplementary postulates:
(K −. 1) K −. α = Cn(K −. α). (Closure)
(K −. 2) K −. α ⊆ K . (Inclusion)
(K −. 3) If α /∈ K or α ∈ Cn(∅), then K −. α = K . (Vacuity)
(K −. 4) If α /∈ Cn(∅), then α /∈ K −. α. (Success)
(K −. 5) If Cn({α}) = Cn({β}), then K −. α = K −. β . (Extensionality)
(K −. 6) K ⊆ Cn((K −. α) ∪ {α}). (Recovery)
(K −. 7) (K −. α) ∩ (K −. β) ⊆ K −. (α ∧ β). (Conjunctive Overlap)
(K −. 8) If α /∈ K −. (α ∧ β), then K −. (α ∧ β) ⊆ K −. α. (Conjunctive Inclusion)

The centerpiece of AGM’s influential 1985 paper:

Theorem (AGM 1985)
Let K be a belief set, and let −. be a function on For(L). Then:

(i) The function −. is a partial meet contraction for K if and only if it
satisfies postulates (K −. 1) to (K −. 6).

(ii) The function −. is a transitively relational partial meet contraction
for K if and only if it satisfies postulates (K −. 1) to (K −. 8).
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Partial Meet Belief Revision and the Basic Postulates

Definition
Let K be a set of formulae. A function ∗ on For(L) is a partial meet
revision for K if there is a selection function γ for K such that for all
formulae α:

K ∗ α = Cn((
⋂
γ(K⊥¬α)) ∪ {α}).

The basic revision postulates are analogues of the basic contraction
postulates:

(K ∗ 1) K ∗ φ = Cn(K ∗ φ). (Closure)
(K ∗ 2) φ ∈ K ∗ φ. (Success)
(K ∗ 3) K ∗ φ ⊆ Cn(K ∪ {φ}). (Inclusion)
(K ∗ 4) If ¬φ 6∈ K , then Cn(K ∪ {φ}) ⊆ K ∗ φ. (Vacuity)
(K ∗ 5) If Cn({φ}) 6= For(L), then K ∗ φ 6= For(L). (Consistency)
(K ∗ 6) If Cn({φ}) = Cn({ψ}), then K ∗ φ = K ∗ ψ. (Extensionality)
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Relational Partial Meet Revision and Supplementary Postulates

Definition
Let K be a set of formulae. A function ∗ on For(L) is a relational partial
meet revision for K if there is a selection function γ for K and a binary
relation � on K⊥L such that for every formula α:

(i) K ∗ α = Cn((
⋂
γ(K⊥¬α)) ∪ {α});

(ii) If K⊥α 6= ∅, then γ(K⊥α) = {Γ ∈ K⊥α : Λ � Γ for all Λ ∈ K⊥α}.
If such a relation � is in addition transitive, then we call such ∗
transitively relational.

As with contraction functions, the six basic postulates are elementary
requirements of belief revision and taken by themselves are much too
permissive.
Supplementary postulates rein in this permissiveness, reflecting the
semantic notion of relational belief revision.

(K ∗ 7) K ∗ (φ ∧ ψ) ⊆ Cn((K ∗ φ) ∪ {ψ}).
(K ∗ 8) ¬ψ /∈ K ∗ φ, then Cn(K ∗ φ ∪ {ψ}) ⊆ K ∗ (φ ∧ ψ).
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Recall the basic and supplementary postulates:

(K ∗ 1) K ∗ φ = Cn(K ∗ φ). (Closure)
(K ∗ 2) φ ∈ K ∗ φ. (Success)
(K ∗ 3) K ∗ φ ⊆ Cn(K ∪ {φ}). (Inclusion)
(K ∗ 4) If ¬φ 6∈ K , then Cn(K ∪ {φ}) ⊆ K ∗ φ. (Vacuity)
(K ∗ 5) If Cn({φ}) 6= For(L), then K ∗ φ 6= For(L). (Consistency)
(K ∗ 6) If Cn({φ}) = Cn({ψ}), then K ∗ φ = K ∗ ψ. (Extensionality)
(K ∗ 7) K ∗ (φ ∧ ψ) ⊆ Cn((K ∗ φ) ∪ {ψ}). (Superexpansion)
(K ∗ 8) ¬ψ /∈ K ∗ φ, then Cn(K ∗ φ ∪ {ψ}) ⊆ K ∗ (φ ∧ ψ). (Subexpansion)

Theorem (AGM 1985)
Let K be a belief set, and let ∗ be a function on For(L). Then:

(i) The function ∗ is a partial meet revision for K if and only if it
satisfies postulates (K ∗ 1) to (K ∗ 6).

(ii) The function ∗ is a transitively relational partial meet revision for K
if and only if it satisfies postulates (K ∗ 1) to (K ∗ 8).
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Propositional Models of Belief Change

The AGM framework for belief change uses the notion of a remainder
set to define operators of belief change, so belief states and belief
change have a syntactic character.

An alternative and arguably more suitable and elegant framework for
belief change uses propositions, or sets of possible worlds, instead.

Propositional models of belief change can be connected to the
syntactic models of belief change we have hereunto discussed,
offering a useful visualization of the different operators of belief
change.

See (Grove 1988).

Also: (Arló-Costa and Pedersen 2010), (Harper 1975, 1977), (Katsuno
and Mendelzon 1989, 1991), (Pedersen 2008), (Rott 1993, 2001),
(Spohn 1988, 1990, 1998).
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Preliminaries

LetWL denote the collection of all maximal consistent sets of L with
respect to Cn (worlds w).

For A ⊆ WL, let Th(A) :=
⋂

A (if A = ∅, Th(A) := For(L))

For Γ ⊆ For(L), let JΓK := {w ∈ WL : Γ ⊆ w}.

For φ ∈ For(L), write JφK instead of J{φ}K.

A member of P(WL) is often called a proposition, and JφK is often
called the proposition expressed by φ.

Finally, let EL := {A ∈P(WL) : A = JφK for some φ ∈ For(L)}
(elementary sets)
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Sphere-Based Revision

Proposed by (Grove 1988), so-called sphere semantics offers an
elegant representation of belief change.

Definition
Let C ⊆ WL, and let S ⊆P(WL). We call S a system of spheres
centered on C if it satisfies the following properties:

(S 1) S is totally ordered by ⊆;
(S 2) C is the ⊆-minimum of S ;
(S 3) WL ∈ S ;
(S 4) For every formula φ and S ∈ S , if S ∩ JφK 6= ∅,

then there is a ⊆-minimum S0 ∈ S such that S0 ∩ JφK 6= ∅.

Now for each formula φ, define the following set:

Cφ := {S ∈ S : S ∩ JφK 6= ∅} ∪ {WL}.
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Propositional Selection Functions

Independent of sphere systems, we may introduce the concept of a
propositional selection function.

Definition
A propositional selection function is a function fS : EL →P(WL) such
that f (S) ⊆ S for every S ∈ EL.

For spheres systems:

Definition

Let S be a system of spheres centered on C. Define a propositional
selection function fS : EL →P(WL) by setting for every formula φ:

fS (JφK) := min
⊆

(Cφ) ∩ JφK

We call fS the Grovean selection function for S .
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Sphere-Based Revision

Definition
Let K be a belief set. A function ∗ is a sphere-based revision for K if
there is system of spheres S centered on JK K such that for all
formulae φ:

K ∗ φ = Th(fS (JφK)).

Grove (1988) establishes an important and useful connection between
sphere-based revision and the AGM revision postulates.

Theorem (Grove 1988)

Let K be a belief set. Then:
(i) Every sphere-based revision for K satisfies postulates (K ∗ 1) to

(K ∗ 8).
(ii) Every function on For(L) satisfying (K ∗ 1) to (K ∗ 8) is a

sphere-based revision.
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The third sphere from the center is the least sphere min⊆(Cφ) intersecting JφK, and
the gray region is the area of the intersection of min⊆(Cφ) and JφK, representing the
resulting belief state fS (φ). The corresponding syntactical representation of fS (φ) is
given by K ∗ φ = Th(fS (φ)).
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The Grove Connection

In fact, (Grove 1988) reveals a close connection between the AGM
modeling and the sphere modeling of belief change.

To see this, suppose that φ ∈ K\Cn(∅). To define belief contraction
and so belief revision, (AGM 1985) consider the φ-remainder set K⊥φ
of maximal subsets Γ of K such that Γ does not imply φ.

It is easily verified that there is a one-to-one correspondence
gφ : J¬φK→ K⊥φ given by gφ(w) = K ∩ w .

Put K⊥(K\Cn(∅)) :=
⋃

φ∈K\Cn(∅) K⊥φ and observe that
WL\JK K =

⋃
φ∈K\Cn(∅)J¬φK.

Then the family (gφ)φ∈K\Cn(∅) induces a one-to-one correspondence
GK : (WL\JK K)→ K⊥(K\Cn(∅)) given by GK (w) := K ∩ w .
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The Grove Connection

We arrive at the following result:

Proposition (The Grove Connection, (Grove 1988))

Let K be a belief set. Then there is a bijection
GK : (WL\JK K)→ K⊥(K\Cn(∅)) such that for every φ ∈ K\Cn(∅) and
w ∈ WL\JK K:

w ∈ J¬φK if and only if GK (w) = K ∩ w and GK (w) ∈ K⊥φ; (1)

JGK (w)K = JK K ∪ {w}. (2)

The Grove Connection facilitates the geometric visualization of
contraction operators.
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Maxichoice Contraction

The small gray disc represents the singleton proposition {w} selected by fS (J¬φK),
generating the contraction of K by φ, K −. φ = K ∩ Th(fS (J¬φK)) = Th(JK K ∪ {w}).
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Full Meet Contraction

The large gray region in the upper right corner represents the proposition J¬φK
selected by fS (J¬φK), generating the contraction of K by φ,
K −. φ = K ∩ Th(fS (J¬φK)) = Th(JK K ∪ J¬φK).
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Partial Meet Contraction

The gray lens represents the proposition given by fS (J¬φK), generating the
contraction of K by φ, K −. φ = K ∩ Th(fS (J¬φK)) = Th(JK K ∪ fS (J¬φK)).
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