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1 INTRODUCTION

This chapter introduces modal logic from a semantic perspective. That is, it presents modal logic
as a tool for talking abougtructuresor models But what kind of structures can modal logic talk
about?

There is no single answer. For example, modal logic can be giveaigabraic semantics
and under this interpretation modal logic is a tool for talking about what are known as boolean
algebras with operators. And modal logic can be giveoplogical semanti¢sso it can also
be viewed as a tool for talking about topologies. But although we briefly discuss algebraic
and topological semantics, for the most part this chapter focuses on modal logic as a tool for
talking aboutgraphs To put it another way, this chapter is devoted to what is known as the
relational or Kripke semantics for modal logic. This is the best known and (with the exception
of algebraic semantics) the best explored style of modal semantics. It is also, arguably, the most
intuitive. Over the years modal logic has been applied in many different ways. It has been used
as a tool for reasoning about time, beliefs, computational systems, necessity and possibility, and
much else besides. These applications, though diverse, have something important in common:
the key ideas they employ (flows of time, relations between epistemic alternatives, transitions
between computational states, networks of possible worlds) can all be represented as simple
graph-like structures. And as we shall see, modal logic is an interesting tool for talking about
such structures: it provides an internal perspective on the information they contain.

But modal logic is not the only tool for talking about graphs, and this brings us to one of the
major themes of the chapter: the relationship between modal logic and other forms of logic. As
we shall see, under the graph-based perspective discussed here, modal logic is closely linked
to both first- and second-order classical logic. This immediately raises interesting questions.
How does modal logic compare with these logics as a tool for talking about graphs? Can modal
expressivity over graphs be characterised in terms of classical logic? We shall ask (and answer)
such questions in the course of the chapter.

Games (in various guises) are another recurring motif. The simple way that modal formulas
are interpreted on graphs naturally gives rise to games and game-like concepts. The most impor-
tant of these is the notion difisimulation This is a relation between two models, weaker than
isomorphism, which can be thought of as a transition-matching game between two players. As
we shall see, this concept holds the key to modal model theory and characterises the link with
first-order logic.

This chapter has two pedagogical goals. The first is to provide a bread-and-butter introduction
to relational semantics for modal logic that can be used as a basis for tackling the more advanced
chapters in this handbook. Thus the reader will find here definitions and discussions of all the
basic tools needed in modal model theory (such as the standard translation, generated submodels,
bounded morphisms, and so on). Basic results about these concepts are stated and some simple
proofs are given. But we have a second, more ambitious, goal: to help the reader start thinking
semantically. We want to give the reader a sense of how modal logicians view structure, and
what they look for when exploring new logics. To this end we have tried to isolate the intuitions
that guide working modal logicians, and to present them vividly. We also make numerous asides,
some of which touch on advanced logical topics. Their purpose is to situate the key ideas in a
wider context, and even beginners should try to follow them.

Here is our plan. In Section 2, we introduce basic modal languages and the graphs over which
they are interpreted. We give the satisfaction definition (which tells us how to interpret modal
formulas in graphs) and the standard translation (which links modal logic with classical logic).
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With these preliminaries out of the way, we are ready to go deeper. What can (and cannot)
modal languages say about graphs? In Section 3 we introduce the notion of bisimulation and
use it to develop some answers; among other things, we characterise modal logic as a fragment
of first-order logic. In Section 4 we examine the computability and computational complexity
of modal logic. A shift of topic? Not at all. In essence, this section examines modal logic
as a tool for talking abouinite graphs. In Section 5 we move to the level of frames and re-
examine the link between modal and classical logic. As we shall see, at this level the fundamental
correspondence is between modal logic and (monadic) second-order logic. In Section 6 we
move beyond the basic modal language and discuss a number of richer languages that offer more
expressivity. But what makes them all modal? As we shall see, many of the themes explored
in earlier sections re-emerge, and point towards an idea that seems to lie at the heart of modal
logic: guarding. Moreover, in some cases it is possible to prove Lidiisgtyle characterisation
results. In Section 8 we discuss three alternatives to relational semantics, namely algebraic,
neighbourhood, and topological semantics. We conclude in Section 8.

Two final remarks. First, although we introduce modal logic from scratch, we assume that
the reader has at least a basic understanding of classical first-order logic (especially its model-
theoretic semantics) and some grasp of the notion of computability. Any standard introduction to
mathematical logic (Enderton [37] is a good choice) supplies more than enough material to follow
the main line of the chapter. Second, dan't discuss modal proof-theory or related notions such
as completeness in any detail (these topics are the focus of Chapter 2 of this handbook). Although
we haven't banished all mention of normal modal logics and completeness from the chapter, in
our view traditional introductions to modal logic tend to overemphasise these topics. We want
this chapter to act as a counterbalance. As we hope to convince the reader, simply asking the
question “But what can $aywith these languages?” swiftly leads to interesting territory.

2 BASIC MODAL LOGIC

In this section we introduce the basic modal language and its relational semantics. We define
basic modal syntax, introduce models and frames, and give the satisfaction definition. We then
draw the reader’s attention to the internal perspective that modal languages offer on relational
structure, and explain why models and frames should be thought of as graphs. Following this
we give the standard translation. This enables us to convert any basic modal formula into a first-
order formula with one free variable. The standard translation is a bridge between the modal and
classical worlds, a bridge that underlies much of the work of this chapter.

2.1 First steps in relational semantics

Suppose we have a set of proposition symbols (whose elements we typically wrjte asand

so on) and a set of modality symbols (whose elements we typically write, &', m”, and so
on). The choice of PROP and MOD is called gignature(or similarity typd of the language; in
what follows we’ll tacitly assume that PROP is denumerably infinite, and we’ll often work with
signatures in which MOD contains only a single element. Given a signature, we deflmestbe
modal languagéover the signature) as follows:

@ u= p|TIL oAy |V |p—=1]eed](m)e|[mle.

That is, a basic modal formula is either a proposition symbol, a boolean constant, a boolean
combination of basic modal formulas, or (most interesting of all) a formula prefixed by a diamond
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or a box. There is redundancy in the way we have defined basic modal languages: we don’t need
all these boolean connectives as primitives, and it will follow from the satisfaction definition
given below that, for aliln € MOD, [m] is equivalent to-{m)—¢ and(m)y is equivalent to
—[m]—¢ (so boxes and diamonds are what as knowdws connectivegust as3 andV are in
first-order logic). But we won't bother picking out a preferred set of primitives, as this is not
relevant to our discussion. If there is only one modality in our language (that is, if MOD has
only one element) we simply writ¢ andO for its diamond and box forms. We often tacitly
assume that some signature has been fixed, and say things like “the basic modal language”, or
“the basic modal language with one diamond”. We won’t need many syntactic concepts in this
chapter, but the following ones will be useful. First, théformulasof a basic modal formula
p arep itself together with all the formulas used to build Second, we say that a subformula
1 of ¢ occurspositivelyif it is under the scope of an even number of negations, otherwise we
say it occurnegatively(when this definition is applied, subformulas of the fofm— 6 should
be read as V 6, and subformulas of the from should be read asT). Finally, themodal
operator depttof a basic modal formula is the maximum level of nesting of modalitiesn
and we writemd(¢) to denote this number.

A model(or Kripke mode) 91 for the basic modal language (over some fixed signature) is a
triple 9 = (W, {R™}..emop, V). HereW, thedomain is a non-empty set, whose elements
we usually callpoints but which, for reasons which will soon be clear, are sometimes called
states times worlds and other things besides. Eaffi* in a model is a binary relation oW,
andV is a function (the valuation) that assigns to each proposition symboPROP a subset
V(p) of W; think of V(p) as the set of points ift wherep is true. The first two components
(W, {R™}..emop) Of M are called thérameunderlying the model. If there is only one relation
in the model, we typically writé W, R) for its frame, and W, R, V') for the model itself. We
encourage the reader to think of Kripke models as graphs, and will shortly give some examples
which show why this is helpful.

Supposev is a point in a modet = (W, {R™},,emop, V). Then we inductively define the
notion of a formulay beingsatisfied(or true) in 9t at pointw as follows (we omit some of the
clauses for the booleans):

MwEp iff  weV(p),

MwE=T always

M, w =L never

Mw = —p iff  not M, w = ¢ (notation:IN, w £ ¢),
MwEeAy iff MwE e and M, w = 9,
MwbEe—y iff  MwlpE e or Mw =Y,

M w k= (myp iff  for somev € W such thatR™wv we havellt, v = ¢,
M, w = [m]p iff  forall v € W such thatR™wv we havedlt, v = ¢.

A formula ¢ is globally satisfiedglobally true) in a model9t if it is satisfied at all points in
9, and if this is the case we writdl |= ¢. A formulayp is valid if it is globally satisfied in all
models, and if this is the case we wrte . A formulay is satisfiable in a modebt if there is
some point i)t at whiche is satisfied, ang is satisfiabldf there is some point in some model
at which it is satisfied. These definitions are lifted to sets of formulas in the obvious way. For
example, a set of basic modal formuldss satisfiable if there is some point in some model at
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which all the formulas it contains are satisfied. A formylés asemantic consequenoéa set
of formulasX if for all models93t and all pointsw in 91, if M, w = ¥ thenI, w = ¢, and in
such a case we writE = ¢. Instead of writing{} = « we writep |= 1.

We now have all the concepts needed to begin exploring modal logic. But instead of moving
on, let us reflect upon the ideas just introduced. First, noténtieenal character of the modal
satisfaction definitionmodal formulas talk about Kripke models from the insittefirst-order
classical logic, when we talk about a model, we do so from the outsidenfencef first-order
logic does not depend on the contextual information contained in assignments of values to vari-
ables: sentences take a bird’s-eye-view of structure, and, irrespective of the variable assignment
we use, are simply true or false of a given model. Modal logic works differently: we evaluate
formulasinsidemodelsat some particular pointA modal formula is like an automaton placed
inside a structure at some poiat and forced to explore by making transitions to accessible
points. This may seem a fanciful way of thinking about the satisfaction definition, but it turns
out to be crucial. When we isolate the mathematical content of this intuition, we are led, fairly
directly, to the notion obisimulation the key to modal model theory, which we will introduce
in Section 3.

Second, note that basic modal languages are syntactically extremely simple: we are working
with languages of propositional logic augmented with additional unary operators. And yet these
languages clearly pack quantificational punch. Diamonds and boxes can be thought of as macros
that encode quantification ov&™-accessible states in a perspicuous variable-free notation. We
will shortly define thestandard translationwhich makes this macro analogy precise.

Third, note that Kripke models can (and in our opinion should) be thought of as graphs. As
we have already mentioned, modal logic has been applied in many different area. What these
areas have in common is that they deal with applications in which the important ideas can be
represented by relatively simple graph-like structures. Let's consider some examples,

A classic interpretation of Kripke models of the foli#, R, V') is to regard the elements of
W as times, and the relatioR as the relation of temporal precedence (thatiis;w’ means
that timew is earlier than timev’). Consider the graph in Figure 1. This shows a simple flow

P P.q q
® o o o -0
ty ty tg ty ts

Figure 1. A simple temporal model.

of time consisting of five points. Here we will take the precedence relation to be the transitive
closure of the next-time relation indicated by the arrows (after all, we think of the flow of time
as transitive) thus every point precedes all points to its right. Note that (as we would expect
from the internal perspective provided by modal languages) whether or not a formula is satisfied
depends on where (or in this exampMher) it is evaluated. For example, the formulagp A ¢)
is satisfied at points,, t; andts (because all these points are to the leftofvhere bothp andg
are true together) but not &t andts. On the other hand, becaugés true att;, we have that>q
istrue atty, to, t3 andt,. One special case is worth remarking on: note that for any basic formula
o whatsoeverQy is satisfied at;. Why? Because the clause in the satisfaction definition for
boxes says thaiy is satisfied if and only if» is satisfied aall R-accessible points. As no points
are R-accessible fromys (it has no points to its right) this condition is trivially met.

The idea of using modal logic as a tool for temporal reasoning is due to Arthur Prior [104,



6 Patrick Blackburn and Johan van Benthem

105]. His work offers what is probably the clearest example of modal logic being appreciated
for its internal perspective. In languages such as English and Dutch, the default way of locating
information temporally is to use tenses, and tenses locate informaiative to the point of
speech. For example, if at some timksay “Clarence will fly”, then this will be true if at some
future timet’ Clarence does in fact fly. Prior viewed tensed talk as fundamental: we exist in
time, and have to deal with temporal information from the inside. He believed that the internal
perspective offered by modal languages made it an ideal tool for capturing the situated nature
of our experience and the context-dependent way we talk about it. Prior called his $gstem
logic. He wrote F' for the forward looking (or future) diamond, and had a second diamond,
written P, for looking back into the past (so in Figure P(p A q) is true atts, for this point

is to the right oft,, wherep andq are true together). Prior needed backward looking operators
to mimic the effect of natural language past tense constructions; for further discussion of Prior's
work in this area, see Chapter 19 of this handbook.

Our next example brings us to one of the influential ways of thinking about Kripke models:
to give them gorocess interpretationwhich means that we view models as collections of com-
putational states, and the binary relations as computational actions that transform one state into
another. This interpretation dates back to the classic work of Hoare [67] and Dijkstra [32]. Let’s
look at a simple example. Consider the graph shown in Figure 2. This shows a finite state au-

a b

Figure 2. Finite state automaton f@tb™ (n, m > 0).

tomaton for the formal languagé'v™ (n,m > 0), that is, for the set of all strings consisting

of a non-empty block ofis followed by a non-empty block @k. But this is precisely the type

of graph we can use to interpret a modal language. In this case it would be natural to work
with a language with two diamondg) and (b). The (a) diamond will be used to explore the
a-transitions in the automaton, while tli& diamond explores thetransitions. It follows that

all formulas of the form

(@) - (a)(b)--- (O)T

(that is, an unbroken block df:) diamonds preceding an unbroken block{®f diamonds) are
satisfied at the start node for all modality sequences of this form correspond to the strings
accepted by the automaton. Although simple, this example shows the key feature of many com-
putational interpretations of modal logic: the relations are thought of as processes (here our
processes are “read the symbbdland “read the symbal”). Note that in this case we are think-
ing in terms of deterministic processes (each relation is a partial function) but we could just as
well work with arbitrary relations, which amounts to working with a non-deterministic models
of processes. The process interpretation, in various forms, underlies much of the discussion of
this chapter, and it underlies Chapters 12 and 17 of this handbook.

Another important application of modal languages is to model the logic of knowledge and
belief; this line of work was pioneered by Jaakko Hintikka [66], and as the more recent treatise
by Fagin, Halpern, Moses, and Vardi [39] makes clear, the studpistemic logicontinues to
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flourish. Again, simple graph-based intuitions underly this application. Consider, for example,
the graph shown in Figure 3. Here we see the epistemic states of a very simple agent. One state,

@ e

a.p q

p,a.,r q.r

Figure 3. Epistemic states of a simple agent.

the agent’s current state, is markedThis represents the agents current knowledge (the agent
knows thaty is the case). The other states represent the way the world might be. For example,
although neithep nor r are true in the current state, the agent views states in whiatdq are
true together, and states in whictandq are true together, and even states in whieéndq and
r are all true together, as epistemically acceptable alternatives to the current stétén 5q)
(“p A ¢ is consistent with what the agent knows”), ab@- A ¢), and<(p A g Ar) are all satisfied
ate. Moreoverdgq (“the agent knows that’) is satisfied at, as at every epistemic alternative the
informationg holds. Hintikka introduced the symb@ for this usage of box (that is, he wrote
Kq for “the agent knows thag”) and his notation is still standard in contemporary epistemic
logic. Epistemic logic is discussed in Chapters 18 and 20 of this handbook.

The next example is important for another reason. Modal logic is often viewed as an intrinsi-
cally intensionallogic, interpreted usingossible world semantic§ his view comes from what
is probably the most historically influential interpretation of modal logic, namely as the logic
of necessity and possibility. In this interpretatiah,is read as “possibly”d is read is “neces-
sarily”, and the points of the Kripke model are regarded as possible worlds. Unfortunately, this
interpretation has tended to overshadow the others, at least in certain research communities (some
philosophers view modal logic, intensionality, and possible worlds as inextricably intermingled).
To ensure that this illusion is dispelled, our last example will be complete¢gnsional Consider
the graph in Figure 4.

loves

judy johnny

detests

loves

detests

terry frank

detests

Figure 4. Ordinary individuals.

This is the sort of extensional information that classical logics (such as first-order logic) are
often used for. But modal logic is at home here too. We can say lots of interesting things about
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such situations. For example
(LOVES)T A (DETESTS(LOVES) T

is true when evaluated at Terry: he loves someone and he detests someone who loves someone.
Nowadays, modal logic is widely used for reasoning about such extensional situations. In par-
ticular, the concept languages which lie at the heart ofiseription logicaused in knowledge
representation are often notational variants of (various kinds of) modal languages. Description
logics are used in a wide range of applications for representing and reasoning about extensional
information. They are treated in depth in Chapter 13 of this handbook.

We're almost ready to define the standard translation, but before doing so let’s deal with three
other matters. First, in most branches of logic and mathematics, there is a notion of two structures
beingisomorphi¢ which can be glossed as “mathematically indistinguishable”. Let’s take this
opportunity to be precise about what isomorphism means in basic modal logic (we give the
definition for models and frames with one relation; it generalises straightforwardly to structures
with multiple relations).

DEFINITION 1 (Isomorphism). Lefit = (W, R,V) and9’' = (W', R', V') be models, and
f: W — W' abijection. If for allw,v € W we have thaRRwv if and only if Rf (w) f(v) then
we say thatf is an isomorphism between the fram{@g, R) and(W’, R’) and that these frames
are isomorphic. If in addition we have, for all proposition lettershatw € V(p) if and only

if f(w) € V'(p) then we say thaf is an isomorphism between the mod®sandt’ and that
these models are isomorphic.

As this definition makes clear, if mode)l® and9t’ are isomorphic, each replicates perfectly
the information in the other. Hence the following result is unsurprising:

PROPOSITION 2.Let f be an isomorphism between mod@sand 9'. Then for all basic
modal formulasp, and all pointsw in 91, we have tha®lt, w = ¢ if and only if9, f(w) E .

Proof. Immediate by induction on the construction@{see Lemma 9 for an example of such a
proof.) -

Second, we want to point out that it is possible to take a more dynamic perspective on the
satisfaction definition. In particular, we can think of it as a game. Let’s start with a concrete
example. Consider the model in Figure 5.

p1 2p
—0

Figure 5. The formula>O<Cp is true atl and4, but false a and3.

As the reader should chec&O<p is true at pointd and4, but false at point& and3. Now
suppose we play the followingvaluation gameThis game has two players, a Verifier (V) and
a Falsifier (F), who disagree about the satisfiability of a formula in some model. The two player
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react differently to the connectives in the formula: for example, occurrences of disjunction allow
V to make a choice as to which disjunct to verify, and force F to make both disjuncts false;
negation switches the roles of the two players; and diamonds make V pick a successor of the
current point, while boxes do the same for F. Moreover, for any propositional sywnkiolins
thep-game ifp is true at the current state, otherwise F wins. A player also wins the game if the
other player must make a move for a modality but cannot.

1V
o/\‘ 4F
3F

V wins
4V IZV
[ ®
4p 2p 1p

V wins V wins

Figure 6. Initial segment of a game tree.

So let’s play the game foPO<Op at1. Figure 6 shows (an initial segment of) the resulting
game tree. Note that V can always win. Her most obvious option is to playresponse to
the outermost diamond; this leaves F with no possible response when faced with the task of
falsifying OCp. But V can also safely play on her first move. As the tree shows, irrespective of
F’'s response, V can always reach a winning position. What this example suggests is completely
general: for any modént, pointw, and basic formulg, we have thaflt, w |= ¢ if and only if
V has a winning strategy when tegame is played i)t starting atw.

Finally, some historical remarks. Where does the relational interpretation of modal logic
come from? The three authors usually cited as pioneers are Saul Kripke, Jaakko Hintikka, and
Stig Kanger. Kripke's contributions are the best known (indeed relational semantics is often
called Kripke semantics) and Kripke [83, 84] are regarded as landmarks in the development
of modal semantics. But Hintikka independently developed the idea in his work on logics of
knowledge and belief (see, for example, his classic monograph “Knowledge and Belief” [66]).
Furthermore, although his work was not well known at the time, Kanger, in a series of papers
and monographs published in 1957, introduced relational semantics for modal logic (see, for
example, Kanger [77, 78]). Indeed, the idea of relational semantics seems to have been in the
air at around this time, and a number of other logicians (for example Arthur Prior and Richard
Montague) discussed similar ideas. For a detailed discussion of who did what and when, the
reader should consult Goldblatt [59].

2.2 The standard translation

We now understand what modal languages are, how they can be interpreted in graphs, and why
this can be an interesting thing to do. What next? Well, if we were following a traditional path,
we would probably remark that as modal languages are to be used for reasoning, some sort of
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proof system is called for. For example, if we were working in a language with one modality
(and in which we had chosen to defifein terms ofd) we might point out that the set of all
modal validities (that is, theninimal modal logi in the language could be axiomatised by a
Hilbert-style proof system callel. This proof system can be defined in a number ways; we
might, for example, stipulate that the axioms<otonsist of all formulas in the language which
have the form of a propositional tautology (by which we mean not merely tautologies such as
p — p which contain no modalities, but also formulas suchtgsp — O<Cp, which contain
modalities but are truth-functionally tautologous too) and all instances of the following axiom
schema:

O(p — ¢) — (Op — TY).
There are two rules of proofmodus ponengif - ¢ and- ¢ — 1 thent ) and modal
generalisation(if - ¢ then Oy); in the definitions of these rules, § is standard notation that
means “the formuld is provable”. Now, this looks like a standard axiomatisation of first-order
logic with O behaving likevV. But K has no analogs of the first-order axioms with tricky side
conditions on freedom and bondage of variables, suttxas— [r/x]¢, wherer is a first-order
term. This is no coincidence. As the standard translation given below will make clear, modal
logic is essentially a perspicuous variable-free notation for a fragment of first-order logic.

But proof systems are not our goal. This chapter is concerned with semantic issues, so quite
different aspects of modal logic call for our attention. To get the ball rolling, let’s return to our
basic semantic entities (Kripke models) and ask what they actually are. This will provide a point
of entry to one of the main themes of the chapter: the relationship between modal and classical
logic.

So what is a Kripke model? No mystery here. A Kripke mod&l { R },..emop, V) is what
model theorists call @elational structure That is, we have a domain of quantificatitii, a
collection of binary relations over this domain, and a collection of unary relations as well (after
all, V(p) is a unary relation for each € PROP). But this means that we are not forced to talk
about Kripke models using modal languages: they provide us with everything needed to interpret
classical languages too. For example, to talk about a m@die{ R },,emop, V') using first-
order logic we would simply make use of a first-order language with a binary relation symbol
R™ for everym € MOD, and a unary relation symbat for everyp € PROP. Modal logicians
have a name for this language: they call it finst-order correspondence languager the basic
modal language over PROP and MOD).

Why “correspondence language”? Because every basic modal formula (in the language over
PROP and MOD) corresponds to a first-order formula from this language vé&aheéard trans-
lation:

ST.(p) = Pz
ST.(L) = 1L
STo(mp) = —STu(p)
ST»L'(SO A ¢) = STJL‘(‘)O) N STy W)
ST.((m)p) = Jy(RMzy A sT,(v))
ST:([mlp) = Vy(R™zy — ST,(p)).

That is, the standard translation maps propositional symbols to unary predicates, commutes
with booleans, and handles boxes and diamonds by explicit first-order quantificatioR'8ver
accessible points. The variabjeused in the clauses for diamonds and boxes is chosen to be
any new variable (that is, one that has not been used so far in the translation). We remarked
earlier that diamonds and boxes were essentially a simple macro notation encoding quantification
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over accessible states; the standard translation expands these macros. Notg(fhadlways

contains exactly one free variable (namely This free variable is what allows the internal

perspective, typical of modal logic, to be mirrored in a classical language: assigning a value to

this variable is analogous to evaluating a modal formula inside a model at a certain point.
Here’s an example of the translation at work:

ST.(p — <Op) ST, (p) — ST.(Cp)
= Pz —sT,.(Op)
= Pz — Jy(Rxy A sTy(p))

= Pz — Jy(Rzy A Py).

As the reader can easily chegki— <p and its standard translatidhe — Jy(Rxzy A Py) are
equisatisfiable in the following sense: for any mofig] and any pointv in 9%, we have that
Mw = p — Opifandonly if M = Px — Jy(Raxy A Py)[x «— w], where the notation
[z < w] means assigw to the free variable:. Unsurprisingly, this relationship is completely
general:

PROPOSITION 3.For any basic modal formula, any modebit, and any pointw in 9t we
have thatt, w = ¢ iff M = ST, (p)[z — w].

Proof. There is practically nothing to prove. The clauses of the standard translation mirror the
clauses of the satisfaction definition. Hence the result is immediate by induction on the structure
of modal formulas. %

Thus the standard translation gives us a bridge between modal logic and classical logic. And
we can immediately use this bridge to transfer meta-theoretic results for first-order logic to modal
logic.

PROPOSITION 4.Basic modal logic has the compactness property. That i§; i a set of
basic modal formulas, and every finite subsetofs satisfiable, thenX: itself is satisfiable.
Moreover, basic model logic has théwenheim-Skolem property. That is, if a set of basic modal
formulasX. is satisfiable in at least one infinite model, then it is satisfiable in models of every
infinite cardinality.

Proof. We show that basic modal logic has thévienheim-Skolem property. Suppose that

is a set of basic modal formulas that has at least one infinite models1,.€E) be the set of
(first-order) formulas obtained by standardly translating all the formulas. ilNow, asX has

an infinite model, by Proposition 3 so dogs,(X). But first-order logic has thedwenheim-
Skolem property, hencer, (X) has a model of every infinite cardinality. But, again by appeal to
Proposition 3, each of these models satisfieso basic modal logic has théwenheim-Skolem
property too. The argument showing it has the compactness property is similar. o

Another easy consequence of the standard translation is that the set of validities (in basic
modal languages) is recursively enumerable. For a basic modal fogmslaalid iff ST, (X) is
a first-order validity, and the set of first-order validities is recursively enumerable.

Let's sum up what we have learned so far. Propositional modal languages are syntactically
simple languages that offer a neat (variable-free) notation for talking about relational structures.
They talk about relational structures from the inside, using the modal operators to look for infor-
mation at accessible states. This internal perspective on models, coupled with the simplicity of
modal syntax, means that propositional modal logic is an attractive tool for certain applications.
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Moreover, viewed as a tool for talking about models, any basic model language can be regarded
as a fragment of its corresponding first-order language: the standard translation systematically
maps modal formulas to first-order formulas (in one free variable) and makes the quantification
over accessible states explicit. This allows us to quickly establish some basic modal meta-theory
by appeal to known results for first-order logic.

3 BISIMULATION AND DEFINABILITY

With the basics behind us it is time to look deeper. In particular, it is time to start mapping the
expressive strengths and weaknesses of the basic modal language. Now, the expressive power of
a language is usually measured in terms of the distinctions it can draw. A language with just the
two expressions “like” and “dislike” would provide only the roughest possible classification of

the world, whereas a richer language of assent and dissent would make it possible to draw finer
distinctions inside the accepted and rejected situations. So what distinctions can modal languages
draw? In this section we discuss this question at the level of models, and in Section 5 we shall
reconsider it at the level of frames. In what follows it will often be useful to think in terms of
pointed models That is, we shall often present models together with an explicit distinguished
point to indicate where we are trying to find a difference.

3.1 Drawing distinctions

A modal language (and indeed any logical language whose formulas form a set) can distinguish
between some mode(9, s) and(M, ¢), but not between all such pairs. For example, our basic
modal language can distinguish the pair of models shown in Figure 7.

A

e

M N
Figure 7.(91, s) and (N, ¢t) are modally distinguishable.

HereO(O L v <O 1) is a modal formula that distinguishes these models: it is trifatiat
s, but false in9t att. But now consider the pair of models shown in Figure 8. Is it possible to
modallydistinguish(91, s) from (&, u)? That is, is it possible to find a (basic) modal formula
that is true in90t at s, but false ing at u? Note that it is easy to distinguish them if we are
allowed to use first-order logic: all points ¥t (including s) are irreflexive, while point: in £
is reflexive, hence the first-order formutazz is not satisfiable (under any variable assignment)
in modelt, but it is satisfied iR whenuw is assigned ta:. But no matter how ingenious you
are, you will not find any formula in the basic modal language that distinguishes these models at
their designated points. Why is this?
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m R

Figure 8.(91, s) and(&, u) are not modally distinguishable.

3.2 Bisimulation

A natural approach to this question is to consider its dual: when should two models be viewed
as modally identical? For example, given a process interpretation, when would we view two
transition diagrams as representations of the same process? TheMadel & of Figure 8

provide an intuitive example: they seem to stand for the same process when we look at possible
actions and deadlocks (note that at each state the process can enter a deadlock situation; that is, it
can enter a state from which it cannot exit). By contr@®tndt in Figure 7 are different, as not

every state iM is threatened with immediate dead-lock. Or consider the epistemic interpretation:
when would we want to say that two graphs represent the same epistemic information? For
example we would probably want to identify the two epistemic models shown in Figure 9 at their
distinguished points andt.

cEl o

Figure 9. Two epistemically equivalent models.

After all, in essence both models present us with a two way choice: either we are in an epistemic
state wherep holds and there is an accessible epistemic state whai@ds, or we are in an
epistemic state wherg holds and there is an accessible epistemic state whéi@ds. The
intuition that both these graphs code the same information is captured by our modal language:
the reader will not find any modal formula that distinguishes them.

The modal logician’s idea of asking when two distinct structures are modally identical (that is,
make the same modal formulas true) lies within an older (and broader) tradition of looking for the
structure preserving morphisms in a given mathematical domain, and letting the corresponding
theory describe those notions that are invariant for such morphisms. This is the spirit of Klein's
Program in geometry, proposed around 1870, and still influential in many fields. Of course, there
is no unique answer to the question of when two structures are the same. This insight was stated
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forcefully in recent years by President Clinton during the Lewinsky hearitigdt depends on

what you mean by “is’ Clinton’s Principle for modal logic means that we should first try to stip-
ulate some notion of structural equivalence for models that is appropriate for modal languages.
This is the purpose of the following definition (first formulated in van Benthem [127, 130]). We
state it here for models with one relati@t) but the definition generalises straightforwardly to
models with any number of relations.

DEFINITION 5 (Bisimulation). A bisimulation between model® = (W, R, V) and9’ =
(W', R, V') is a non-empty binary relatioi’ between their domains (that i& C W x W)
such that whenever Ew’ we have that:

Atomic harmony: w andw’ satisfy the same proposition symbols,
Zig: if Rwv, then there exists a point (in M) such thaw Fv' and R'w’v’, and
Zag: if R'w’v’, then there exists a point(in 1) such thaw Ev’ and Rww.

If there is a bisimulation between two mod&isand9t, then we say thabt and9t are bisimilar.
Moreover, we say that two states are bisimilar if they are related by some bisimulation.

Putting this in words: two states are bisimilar if they make the same atomic information true
and if, in addition, their transition possibilities match. That is, if a transition to a related state is
possible in one model, then the bisimulation must deliver a matching transition possibility in the
other. Atomic harmony coupled with the matching transitions concept embodied in the zigzag
clauses make bisimulation a natural notion of process equivalence, and indeed bisimulations
were independently discovered in computer science (see Park [100]).

Returning to the model®1, &, and9t considered above (and disregarding proposition sym-
bols) it is easy to see thalt and & are bisimilar: the dotted lines in Figure 10 indicate the
required bisimulation (note that the indicated bisimulation links the two designated points). Fur-
thermore, it is easy to see that there is no bisimulation that links the designated pdhendf
K. Why not? Because a move froito the right-hand world i®t has no matching move if:
moving downwards from is no option (end-points never bisimulate with points having succes-
sors) but neither is moving reflexively fromto itself (as one can move fromto a successor
which is an endpoint, but this can’t be done from the right-hand worlt)in

[ ]
Y

Figure 10.(91, s) and(&, ) are bisimilar,(&, v) and(91,¢) are not.
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Given any modal modét, bisimulations can be used in at a number of ways. The so-called
bisimulation contractiormakesit as small as possible. To define this, note that it follows from
Definition 5 that any union of bisimulations between two models is itself a bisimulation. There-
fore the union of all bisimulations between two models is a maximal bisimulation between them.
Now, form the maximal bisimulation of mod#k with itself; it is easy to check that this bisimula-
tion is an equivalence relation. Define a quotien®fvhose points are the equivalence classes,
and relate the equivalence cldsg to the equivalence clags| iff |w| and|v| contain points
w’ andv’ such thatRw’v’. The map from points to their equivalence classes is a bisimulation.
For example, the bisimulation shown in Figure 10 betwg@mand £ is a bisimulation contrac-
tion. Bisimulation contractions are the most compact representation of processes, at least from
a modal standpoint. They remove all the redundancies in the representation — but also all aes-
thetic symmetries. (A butterfly is a redundant object, as one wing contains enough information
under this perspective.)

Bisimulations can also be used to make bigger models: one important construction which
does this is calletree unraveling(for a very early paper using this construction, see Dummett
and Lemmon [34]; for an influential paper that made heavy use of it, see Sahlqgvist [111]).

To unravel a model we take all finitB-sequences of points # that start at some point
w. These sequences form a tree with one-step extensions of sequences as the tree-successor
relation. Projection from a sequence to its last element is a bisimulation onto the ofigirfss
an example, consider the unraveling of the two element m&debund its distinguished point
u to the infinite comb-like structure shown in Figure 11 (we uses the name of the other point
in this model). Reasoning about trees is often easier than reasoning about arbitrary graphs, and

»

<u> > <u,v>

<uu>——————¥ <u,u,v>

<u,u,u> ——> <u,u,u,v>

Figure 11. Unraveling® aroundh.

so this method is of considerable theoretical utility. Moreover, as we shall see in the following
section, tree unraveling is relevant to thecidabilityof modal logic.

Three other model constructions used in modal logic, namlisjpint unions generated sub-
models andbounded morphism®r p-morphism}pare also bisimulations. Historically, all three
constructions were widely used in modal logic more than a decade before the unifying concept
of a bisimulations was introduced (the classic source for these constructions is Segerberg [113],
where they are heavily used, often in combination, to prove completeness theorems). All three
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constructions are fundamental tools in many areas of modal logic (for example, when reformu-
lated at the level of frames, they are key ingredients in the Goldblatt-Thomason Theorem which
we discuss in Section 5) so we take this opportunity to define them for models with one accessi-
bility relation. These definitions generalise straightforwardly to models of arbitrary signature.
The simplest construction is forming disjoint unions. If we have a pair of disjoint models
(that is a pair of model§W, R, V') and(W’, R', V") such thaf?” andWW’ are disjoint) then their
disjoint union is the modelW U W', RU R',V + V'), whereV + V" is the valuation defined
by (V+V")(p) = V(p) UV'(p), for all proposition symbolg. That is, forming a disjoint union
of two models means lumping together all the information in the two graphs. What if the graphs
are not disjoint? Then we simply take disjoint isomorphic copies of the two models, and form
the disjoint union of the copies. This lumping together process can be generalised to arbitrarily
many models, which prompts the following definition.

DEFINITION 6 (Disjoint Unions). Given mutually disjoint moded&; = (W;, R;,V;), where

1 ranges over the elements of some index/saetve define the disjoint union of these models
to bedM = (W, R, V), whereW = J,.; Wi, R = U,c; Ri, andV (p) = U, Vi(p) for all
proposition symbolg. To form the disjoint union of a collection of models that are not mutually
disjoint, we first take mutually disjoint isomorphic copies, and then form the disjoint union of
the copies.

It is immediate from this definition that any component mo##él of a disjoint union)t is
bisimilar with 91: for the bisimulation relatiorZ we simply take the identify relation. Identity
clearly satisfies the atomic harmony and zigzag conditions required of bisimulations.

Disjoint unions build bigger models from (collections of) smaller ones. Generated submodels
do the reverse. They arise by restricting attention to subgraphs of a given graph that are closed
under relational transitions. For example, consider the two graphs in Figure 12. It is clear that

— —

Figure 12. Generating a submodel fram

the graph on the right arises by restricting attention to a certain transition-closed subgraph of the
graph on the left, namely the set of point reachable by taking sequences of transitions from
This motivates the following definition.

DEFINITION 7 (Generated Submodels). L®t = (W, R, V) be a model and lei’’ C W.
We say that a modélt’ = (W', R', V') is the restriction ofltto W' if R = RN (W' x W)
and for all proposition symbgl we have that”’ (p) = V(p) N W’. We say thatV’ is R-closed
if for all w € W, if Ruv thenv € W'. Finally, we say tha®’ is a generated submodel 9t iff
M’ is the restriction o0t to an R-closed subset dfi’.

If 9 = (W', R',V’) is a generated submodel % = (W, R,V), andS C W’ has the
property that every’ € W' is reachable via a finite sequence/dtransitions from some € S,
then we say tha®t’ is the submodel ofit generated bys. If S is a singleton sefs}, then we
say tha®t’ is the submodel dit generated by the poist
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A generated submodel is bisimilar to the model that gave rise to it: as with disjoint unions,
the identity relation relates the two models in the appropriate way. Incidentally, note that every
component model of a disjoint union is a generated submodel of the disjoint union.

Finally we turn to bounded morphisms (@morphisms as they are often called).

DEFINITION 8 (Bounded Morphisms). A bounded morphism between mddels (W, R, V)
andd’ = (W', R’, V') is a functionf with domain¥ and rangéV"’ such that:

Atomic harmony: Points inT¥ and theirf-images satisfy the same proposition symbols (that
is,w € V(p) iff f(w) € V'(p), for all proposition symbolg).

Morphism: if Rwv, thenR' f(w) f(v).
Zag: if R’ f(w)v’, then there exists a(in 9) such thatf (v) = v" and Rwwv.

If fis a bounded morphism frofii to M’ and f is surjective, then we say thgi’ is a bounded
morphic image ofn.

Bounded morphisms are bisimulations: a bounded morphism is simply a bisimulation in
which the bisimulation relatiorE is an R-preserving morphisnf (note that the only essen-
tial difference between the two definitions is that the morphism clause replaces the zig clause,
and clearly morphism implies zig). Historically, it was the definition of bounded morphisms that
inspired the definition of bisimulations.

As an example of a bounded morphism between models, consider Figure 13 (again we ignore
proposition symbols).

N7
\\\\//

N\ /
Ny,

Figure 13. Bounded morphism collapsing the natural numbers to a reflexive point.

Here we have collapsed the natural numbers in their usual order to a single reflexive point. It
is clear that this map satisfies both the morphism and zig clauses, so it is indeed a bounded
morphism.

3.3 Invariance and definability in first-order logic

Structural invariances preserve certain patterns definable in appropriate languages. Before pur-
suing the match between bisimulation and modal logic, let us examine the situation in first-order
logic. The archetypal structural invarianceisemorphismbetween models. As we saw ear-

lier (recall Proposition 2) modal formulas are invariant for isomorphism. More generally, it is
well known that if f is an isomorphism betweelt and 91, then for each first-order formula
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o(z1, ..., xk), and each matching tuple of objects, . . . , di) in 9, the following equivalence
holds:

M= pldi, ..., di] iff N p[f(di),..., fd)],

or stated in words: first-order formulas are invariant for isomorphism.

On special models, the converse also holds. For example, it is a well-known fact that any
two finite models with the same first-order theory are isomorphic. But no general converse
holds, as there are many more isomorphism classes of models than complete first-order theories.
Invariance for isomorphism is even a defining condition for any logic in abstract model theory.
But no matter how strong the logic, the converse still fails whenever the formulas of a logic form
a set, as opposed to the proper class of isomorphism types.

Thus it makes sense to look at invariance conditions for weaker notions of structural equiva-
lence. For example, potential isomorphisrbetween two model®t and9t is a non-empty sek
of finite partial isomorphisms satisfying the back-and-forth extension conditions that, whenever
f € I andd € 9, then there is am € 9 such thatf U {(d,e)} € I, and vice-versa. Note
that isomorphisms induce potential isomorphisms: simply take be the family of all finite
restrictions. The converse is not true. Matching up all finite sequences of rational numbers with
equally long sequences of real numbers (in the same order) is a potential isomorphism between
Q andRR, even though these two structures are not order-isomorphic for cardinality reasons.

It is easy to show that all first-order formulas are invariant for potential isomorphism, but the
real match is with a stronger language: two models are potentially isomorphic iff they have the
same complete theory in thefinitary first-order logicL...,. This formalism also gives rise to
much stronger definability results. For example, for each m@iiiehere is a sentencgy of
Lo, Which holds only in those modefg which have a potential isomorphism wiit; that is,
models can be defined up to potential isomorphism. Moreover, countable models can even be
defined (modulo isomorphism) using only countable conjunctions and disjunctions. This is all
very nice of course, but infinitary logic is a bit outlandish from a practical viewpoint.

Better matches between structural invariance and first-order definability arise in the more
fine-grained setting of Ehrenfeucht-Fsge comparison games between mod@lsand9t played
between a Spoiler (who looks for differences between the models) and a Duplicator (who looks
for analogies between them). Mod@&$ and9t have the same first-order theory up to quantifier
depthk iff the Duplicator has a winning strategy in their comparison game éweunds. We
won't give details here, as we will define a modal comparison game of this sort at the end of the
section.

3.4 Invariance and definability in modal logic

With these analogies in mind, let us now investigate the modal situation. For a start, modal
formulas aranvariant for bisimulation

LEMMA 9 (Bisimulation Invariance Lemma). If E is a bisimulation betweeft = (W, R, V)
and’ = (W', R, V'), andwEw’, thenw andw’ satisfy the same basic modal formulas.

Proof. By induction on the construction of modal formulas. The case for proposition symbols
is immediate by atomic harmony. The inductive steps for the boolean connectives are straight-
forward. And the inductive step fo® formulas shows exactly what the zigzag clauses were
designed for. For consider the left to right direction. Gi¥gnw | ¢y andwEw’, we want to

show thatt’, w’ |= Gw. Now, I, w = Oy means that there is somein Mt such thatRwo

and9, v | . But then (by zig) there must be a poiritin 9t such that Fv’ and R'w’v’. By
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the induction hypothesigft’, v = ¢, hencedt’, w’ |= O as required. The argument for the
right to left direction is essentially the same, using zag in place of zig. -

The result allows us to show failures of bisimulation easily. For example, we have already
sketched an argument showing that the mo@@land ! of Figure 10 have no bisimulation
between their designated points, but a quicker proof is now possible: these qammistbe
bisimilar because there are modal formulas (for examdle L v <0 1)) which are satisfied
at one point but not the other. On the other hand, the dotted lines in Figure 10 shon trat
R are bisimilar; it follows that all points linked by a dotted line in these graphs make exactly the
same modal formulas true. Another typical application of this result is to show the undefinability
of certain structural notions. For example, we can show that irreflexivity is modally undefinable:
no modal formula holds in exactly those pointof models such that Rww. To prove this, it
suffices to find two bisimilar points in two models, one of which is reflexive, the other irreflex-
ive. One such example is the bisimulation between the designated poiitsaofl & shown in
Figure 10. Another is the bounded morphism of Figure 13 which collapses the natural numbers
to a single reflexive point.

Another consequence of this result is that the disjoint union, generated submodel, and bounded
morphism constructions are all satisfaction preserving. More precisely:

LEMMA 10. Modal satisfaction is invariant under the formation of disjoint unions, generated
submodels, and bounded morphisms. That is:

1. If9 = (W, R, V) is the disjoint union of)t; = (W;, R;, V;), for i from some index sdt
then for allw € W; and alli € I we have thaflt, w = ¢ iff M;, w = .

2. If9 = (W', R, V') is a generated submodel 9t = (W, R, V) , then for allw’ € W’
we have thaflt, w’ |= ¢ iff M, w' = .

3. If9 = (W', R', V") is a bounded morphic image 8k = (W, R, V') under the bounded
morphismyf, then for allw € W we have thaft, w = ¢ iff DV, f(w) E .

Proof. All three results could be proved by induction on the structureooBut such proofs are
unnecessary: we know that disjoint unions, generated submodels, and bounded morphisms are
all examples of bisimulations, hence these results follow from Lemma 9. o

To sum up the discussion so far, bisimulation implies modal equivalence. But what about the
converse? For finite models, we have the following.

PROPOSITION 11.If pointsw andw’ from two finite model9t and 9t satisfy the same modal
formulas, then there is a bisimulatidf betweerd)t and 9t such thatv Ew’.

Proof. Assume we are working with models containing only a single relatioiwe will show
that the relation of modal equivalence is itself a bisimulation. That is, we will define the bisimu-
lation relationE by wEw’ iff w andw’ make the same modal formulas true. We now verify that
E so defined is indeed a bisimulation.

It is immediate thatF' satisfies atomic harmony. As for zig, assume th#tw’ and Rwwv.
Assume for the sake of contradiction that there isshm 9t such thatR'w’v’ andvEv’. Let
S’ = {u | Rw'v'}. Now, asw has anR-successop, we havedlt, w = OT. AswEw’, we
havet’, v’ = OT too, henceS’ is non-empty. Furthermore, 88’ is finite, S must be finite
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too, so we can write it afu], . .., u}, }. By assumption, for every, € S’ there exists a formula
¥; such thatlt, v |= ¢; but', ul P~ ;. It follows that

M, w = (Y1 A+ Ady) and M w' = Oy A=+ Ay,

which contradicts our assumption thafvw’. HenceF satisfies zig. A symmetric argument
shows thatr satisfies zag too, hence it is a bisimulation. -

Thus on finite models, the expressive power of modal languages matches up exactly with
bisimulation invariance. This result can be extended to broader model classes, such as models
with finite branching width for successors (note that the proof just given does not depend on
the models involved being finite: it would also work for infinite models in which each point has
only finitely many R-successors) and suitably saturated models in a model-theoretic sense. But
no general converse can hold, for the reason mentioned earlier for first-order logic. Indeed, the
converse does not hold generally even for countable models: not all modally equivalent count-
able models are bisimilar. Consider the two models in Figure 14 (assume that all propositional
symbols are true at all point in both models). Both models have infinitely many branches leading
away from their root nodes, but whereas all the branches in the model on the left are of finite
length, the model on the right has a branch of infinite length. Now, as the reader should check,
both models satisfy the same modal formulas at their root nodes. However there is no bisimula-
tion that links their root nodes; the infinite branch in the model on the right makes it impossible

to define one.

Figure 14. Modally equivalent but not bisimilar.

This counterexample could be repaired by passing tiofaritary modal language?, , with
arbitrary (countable) conjunctions and disjunctions. Infinitary modal equivalence occurs between
countable modelét, s) and(91, t) whenever there is a bisimulation linkisgo ¢. Furthermore,
every countable modét, s) is defined up to bisimulation by sonf&, | formuladgy 5. Again,
such infinitary languages are somewhat impractical, but there are some useful bisimulation in-
variant formalisms which lie between the basic modal language and its infinitary extension. Two
example argoropositional dynamic logiend themodalu-calculus which are discussed in Sec-
tion 6.

Lemma 9 and its partial converses do not exhaust what needs to be said about the role played
by bisimulations in modal model theory. But to gain a deeper understanding, we need to bring in
a third component: the first-order correspondence language that we met in Section 2.2 when we
introduced the standard translation.

3.5 Modal logic and first-order logic compared

The basic modal language can be viewed as a sort of miniature version of full first-order logic
over graph models. The standard translation defined in the previous section shows that each
modal formulay corresponds to a first-order formulas, (¢) containing a free variable. But
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the converse does not hold: some first-order formulas in the correspondence language are not
modally definable. We have already see an example. As the bisimulation between ficatads

R shows (recall Figure 10) no modal formula defire8zz. Thus, viewed as a tool for talking

about models, modal logic is strictly less expressive than the full first-order correspondence
language. And this prompts a further question: given that a modal language is essentially a
fragment of the corresponding first-order language, exactly which fragment is it? This question
has an elegant answer. First, a preliminary definition.

DEFINITION 12. A first-order formulap(x) is invariant for bisimulation if for all model&n
and?t’, and all pointsw in Mt andw’ in M, and all bisimulationdZ betweert)t and9’ such
thatw Ew’, we have thailt |= ¢[z «— w] iff M’ |= plx — w’].

We can now state the main result: basic modal languages correspond to the fragment of their
first-order correspondence language that is invariant for bisimulation. More precisely:

THEOREM 13 (Modal Characterisation TheorenT)he following are equivalent for all first-
order formulasp(z) in one free variabler:

1. ¢(«) is invariant for bisimulation.

2. ¢(x) is equivalent to the standard translation of a basic modal formula.

Proof. That clause (ii) implies (i) is a more or less immediate consequence of Lemma 9. The
hard direction is showing that clause (i) implies (ii). The original proof can be found in van
Benthem [127, 130]. Two other proofs are given in Chapter 5 of this handbook. One is quite
close to van Benthem’s original approach, the other is based on games. -

Nowadays many different proofs are known for this result, and for various extensions and
variants. For example, Rosen [109] showed that the result holds over finite models; this is far
from obvious, as the restriction to finite models means that many standard results of first-order
model theory (such as the Compactness Theorem) cannot be applied. And Otto [99] showed that
the modal equivalent guaranteed to exist by clause (ii) of the previous theorem can be restricted
to a formula of modal operator dep2fi, wherek is the quantifier depth af(z).

Basic modal logic and first-order logic are analogous in many ways. As we mentioned in
Section 2, via the standard translation modal logic immediately inherits basic meta-theoretic
properties of its more powerful neighbour, such as the Compactnesséamehheim-Skolem
Theorems. But not all such transfer is automatic. Consider, for exampl€raig Interpolation
property:

If ¢ = 4 then there exists a formutawhose vocabulary is included in that of both
o and such thatp = 6 andé = .

Does the same result hold for basic modal formyand such thaty = ¢)? Appealing to the

result for first-order logic gives us a first-order formélauch thasT, (p) &= 6 andf = ST, (v).

But what guarantees that this interpolant is modally definable? Interpolation does in fact hold
for the basic modal language, but additional work is needed to prove this. However interpolation
does mesh well with the above preservation results (for a detailed account, see Chapter 8). Here
is an improvement on the Modal Characterisation Theorem. We say that a first-order farmula
impliesy along bisimulationif the following implication holds: ifE is a bisimulation between

(MM, s) and(N, t), andM, s = ¢, thenN, ¢t = .

THEOREM 14 (Modal Characterisation-Interpolation TheorenmiJhe following are equivalent
for all first-order formulasy(x):
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1. ¢(x) impliesy(x) along bisimulation.

2. There is a modally definabtein the common vocabulary ¢f and« such thaty = 6 and

0 .

Proof. The proof can be found in Barwise and van Benthem [11]. Note that the Modal Charac-
terisation Theorem follows by taking(z) equal toy (). This result does not imply ordinary
modal interpolation as it stands: additional work is again needed. -

Behind the above observations is the fact that the cheaply transferred properties are universal
in some sense, whereas the universal-existential property of interpolation requires honest work.
Even so, there is an intuition (based on decades of positive experience with transferring results)
that modal logic and first-order logic share all general meta-properties except decidability. No
proofs of significant formulations of this idea have been found so far, but we can point to some
broad analogies regarding methods. Generally speaking, bisimulation plays the same role for
modal logic that potential isomorphism does for first-order logic. This can even be made precise
in the following sense. To each first-order moéi#l we can associate a modal model whose
points are the variable assignments ifith and whose accessibility relations are changes from
one assignmengtto anothel(z := d) that resets the value for the variabléo the objectl € M.

Then two model§)t anddt have a potential isomorphism between them iff their associated modal
models are bisimilar; see van Benthem [135] for details.

We conclude this discussion with two general results that allow us to switch between modal
and first-order relations between models. In essence, both results have the form of a commutative
diagram.

LEMMA 15 (First Lifting Lemma). The following are equivalent for all mode(), s) and
(M, 1):

1. (M, s) and (N, ¢) are modally equivalent.

2. (", s) and (91,¢) have elementary extensions to mod@k™, s) and (M, ¢) which are
bisimilar.

LEMMA 16 (Second Lifting Lemma).The following are equivalent for all mode(91, s) and
(M, 1):

1. (M, s) and (N, t) are modally equivalent.

2. (", s) and (91, ¢) are bisimilar to modelg9 ™, s) and (M*, ¢) which are elementarily
equivalent.

Proof. The first lifting lemma was originally proved in van Benthem [127]. It is the key item in
(some proofs of) the Characterisation Theorem (thmodels are suitably saturated elementary
extensions which allow the Characterisation Theorem to be proved rather straightforwardly). The
second lifting lemma (see van Benthem [133] for the original result, and&ékagvan Benthem,

and Nemeti [5] for full proof details) involves judicious tree unraveling of the two models, dupli-
cating sub-trees to create uniformity, coupled with an Ehrenfeuclis€rargument to establish
elementary equivalence. —



Modal Logic: A Semantic Perspective 23

3.6 Bisimulation as a game

Bisimulation can naturally be thought of as a form of process equivalence, but a more dynamic
perspective is also possible. We have already seen that the modal satisfaction definition can be
recast in the form of a game (recall Figure 6) but the task of determining whether two models
are bisimilar can also be viewed in this way. Consider a game between Spoiler (the difference
player) and Duplicator (the similarity player) and comparing successive pairs in two pointed
models(9t, w) and (N, w'):

If w and w’ do not agree on atomic information, Spoiler wins the game in zero
rounds. In subsequent rounds, Spoiler chooses a state in one model which is a suc-
cessor of the current or w’, and Duplicator responds with a matching successor in
the other model. If the chosen points differ in their atomic properties, Spoiler wins.

If one player cannot move, the other wins. Duplicator wins on infinite runs on which
Spoiler does not win.

This game captures the zigzag behaviour of bisimulations in an obvious sense. It is also
determined one of the two players has a winning strategy. (This is because it is an open Gale-
Stewart game in the sense of game theory.) For example, returning yet again to theXiptfels
andR considered at the start of this section, we see that Duplicator has a winning strategy in the
comparison game for the modéB and K starting from their matched designated points, while
Spoiler has one fait and9t. The following result clarifies the role of these games precisely:

LEMMA 17 (Adequacy of Modal Comparison Games).

1. There is an explicit correspondence between Spoiler's winning strategies:-roand
comparison game betweét, s) and (9, t) and modal formulas of modal operator depth
k on whichs andt disagree.

2. Thereis an explicit correspondence between Duplicator’s winning strategies over an infinite-
round comparison game betweét, s) and (91,¢) and the set of all bisimulations be-
tweengJt and 1 that link the pointss andt.

Proof. This resultis essentially a fine-grained restatement of the Lemma 9 from a game-theoretic
perspective. See Chapter 5 of this handbook for more on game-based approaches to bisimulation.
_{

For example, in the game between the mod@sand K given earlier, Duplicator wins by
choosing responses that stick to the bisimulation links. And in the game befleand 91,
Spoiler can win in at most three rounds by using the earlier modal difference fornjtlal
v &0 1) of modal operator depth three. In each round he can make sure that some modal
difference remains at the current match, with the modal operator depth descending each time.

4 COMPUTATION AND COMPLEXITY

We view modal logic as a tool for representing and reasoning about graphs. Our discussion of
expressivity has given us some insight into the representational capabilities of modal logic (at
least at the level of models) but what about reasoning?

In this section we discuss modal reasoning from a computational perspective. We concentrate
on themodel checking tasknd thesatisfiability and validityproblems, but also make some
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remarks about thglobal satisfiabilityand themodel comparisonasks. As we shall see, the
complexity of the modal version of these tasks is lower than that of their first-order counterparts.

Before going further, two general remarks. First, although we are about to study reasoning,
we are not about to embark on the study of modal proof systems (apart from anything else, the
standard proof systems are only relevant to satisfiability and validity checking, and there is more
to modal reasoning than this). Secondly, although we are ostensibly moving on from expressivity
issues to computational issues, the two topics are intertwined. In essence, the positive computa-
tional results reported here arise from negative expressivity results (for example, the inability of
the basic modal language to force the existence of infinite models).

4.1 Model checking
The model checking task can be formulated locally:

Given a (finite) modedt, a pointw in 9, and a basic modal formule, is ¢
satisfied it at w?

Or globally:

Given a (finite) modedt, and a basic modal formule, is ¢ satisfied at all points
in M?

Or in a form that subsumes both the local and global perspectives:

Given a (finite) modeMt, and a basic modal formule, return the set of points in
M that satisfyp.

In what follows we shall work with the last formulation, which is probably the most common
way of thinking about model checking in practice.

Now, model checking is clearly a task with computational content — but is it reaéigson-
ing task? In our view, yes. In essence, a model is a ‘flat’ store of information: it consists of a
collection of entities, together with a specification of which entities have which properties, and
which entities are related by which atomic relations. A modal formula, on the other hand, is a
recursively constructed tree. The embedding of connectives and modalities within one another
permits relatively short formulas to make interesting assertions, assertions that go way beyond
the mere listing of atomic facts. If we add to these differences the practical observation that in
typical applications the formula will be much smaller than the model, we see that model checking
is about synchronising two very different forms of information: it tells us whether the abstract in-
formation embodied in the formula is implicitly present in the model, and gives us a set of points
where this implicit information emerges. Viewed this way, model checking is a quintessential
reasoning task.

Moreover, model checking has turned out to be of great practical importance — indeed, one
of the more salutary lessons computer science has taught logic is just how important this mod-
est looking form of reasoning actually is. Nowadays the practical importance of modal model
checking dwarfs that of determining modal satisfiability or validity (the tasks logicians have
traditionally viewed as paramount) as a wide range of practical tasks can be modeled in a com-
putationally natural manner, and efficiently solved, via model checking. A classic example is
hardware verification. Even though a computer chip is a concrete object, it gives rise to a nat-
ural abstract model, namely the set of all states the chip can be in, and the transitions between
them. If a chip is to work satisfactorily, its computational runs (that is, the sequences of states
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it can follow by making transitions from the initial state) should possess a number of high-level
‘emergent’ properties: for example, these runs should not enter deadlock situations. If we have a
modal language that can express the desired properties (for example, absence of deadlock) then
by checking the formula in the model representing the chip we can determine whether the design
is satisfactory or not.

So how should we perform model checking? The standard approach is to use a bottom-up
labeling algorithm To model check a formula we label every point in the model with all the
subformulas ofp that are true at that point. We start with the proposition symbols: the valuation
tells us where these are true, so we label all the appropriate points. We then label with more
complex formulas. The booleans are handled in the obvious way: for example, wevlalitkl
¥ A 0 if w is labeled with bothy andd. As for the modalities, we labeb with ¢ if one of
its R-successors is labeled with and we label it withJ¢ if all of its R-successors are labeled
with . A precise definition of the algorithm for checking diamond formulas is given in the
pseudo-code of Figure 15.

procedure Check< ()
T:={v|v¢ € label(v)};
while T # ( do
choosev € T';
T:=T\{v};
for all w such that Rwv do
if O ¢ label(w) then
label(w) := label(w) U {OY};
end if;
end for all ;
end while;
end procedure

Figure 15. Model checkingpi).

The beauty of this algorithm is that we never need to duplicate work: once a point is labeled
as makingp true, that's it. This makes the algorithm run in time polynomial in the size of the
input formula and model: the algorithm takes time of the order of

con(y) x nodegNt) x nodegn),

wherecon(p) is the number of connectives §n andnode$9) is the number of nodes Bit. To

see this, note thaton(y) tells us how many rounds of labeling we need to perform, one of the
nodeg) factors is simply the upper bond on the nodes that need to be labeled, while the other
is the upper bound on the number of successor nodes that need to be checked.

Thus modal model checking is a computationally tractable task, but this is not the case for
first-order logic. In fact, model checking first-order formulas is a PSPACE-complete task (see
Chandra and Merlin [22]). That is, although it is possible to write an algorithm that solves the
first-order model checking task using an amount of computer memory that is only polynomial
in the size of the input model and formula, the algorithm may require running time that is ex-
ponential in the size of the input. The problem, of course lies with the quantifiers. Assuming
that the standard assumptions made in complexity theory are correct, there is no way of adapting
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the labeling algorithm (or indeed, any other algorithm) to perform first-order model checking in
polynomial time.

However the labeling algorithm sketched above does adapt to more powerful modal languages,
and this is important. As we said above, when model checking we want to state interesting high-
level properties of the situation we are modeling, and often the ordinaayd & modalities
simply aren’t expressive enough. Far more useful is the binary Until modality:

M,s =U(y,0) iff thereisat suchthatR*t anddn,t = 1,
and for allu such thats R*u anduR™t we havedlt, u = 6.

HereR* is the reflexive transitive closure of the state transition relal@xplored by, andR*

is its transitive closure. So we have defined the semantics of Until in terms of the sequences of
states (that is, the computational runs) that can be followed in the model. The Until modality is a
fundamental component of some of the most important formalisms used in model checking, such
as LTL (Linear Time Temporal Logic) and CTL (Computational Tree Logic). For a introduction

to these logics from a model checking perspective, see Clarke, Grumberg and Peled [25].

Now, we shall discuss the Until operator, and why it is useful, in more detail in Section 6.3.
Here we simply want to address the following question: how do we extend the labeling algorithm
to handle formulas of the forti (¢, 6)? Here’s the basic idea. First, if any poinis labeled with
1, labelw with U(y, 8). Second, if any point is labeled withd and at least on&-successor
of v is labeled withU (¢, 8), then label with U (v, 8). It should be clear that these two steps
correctly reflects the semantics for Until just given. Moreover, it can be made algorithmically
precise as the pseudo-code given in Figure 16 shows.

procedure CheckU (1, 0)
T:={v|v¢ € label(v)};
forall v € T do
label(v) = label(v) U{U (¥, 0)};
end for all ;
while T # () do
choosev € T';
T:=T\{v};
for all w such that Rwv do
if U(y,0) ¢ label(w) and 8 € label(w) then
label(w) := label(w) U{U (v, 0)};
T:=TU{w};
end if ;
end for all ;
end while;
end procedure

Figure 16. Model checking/ (¢, 6).

Now for an important point. Throughout the previous discussion we have tacitly assumed
that we have some way of representing formulas and finite models that is suitable for compu-
tational implementation. It is probably not worth sketching details of how this might be done:
nowadays it seems safe to assume that most readers of a technical book on logic have at least
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a nodding acquaintance with programming (indeed, we suspect that most of our readers would
find it straightforward to devise a computational syntax for models and modal languages, and to
implement simple programs for working with them).

Nonetheless, such issues cannot be taken lightly. A major factor in the spectacular progress of
model checking has been the developmenBiofary Decision DiagramgBDDs) andOrdered
Binary Decision DiagramgOBDDs). BDDs (which are compact representations of boolean
expressions) were introduced by Lee [88] and Akers [3], and OBDDs (a more sophisticated form
of BDD with fewer representational redundancies) were introduced by Bryant [17]. BDDs were
first proposed for model checking by Burch, Clarke, McMillan, Dill, and Hwang [18] and as
the title of this paper indicates (“Symbolic model checking?® states and beyond”) this lead
to a dramatic increase in the size of the models that could be handled. It is important not to
underestimate the gap between the labeling algorithm sketched above, and what it takes to make
a working model checker handle a large model. Crossing this gap requires a combination of
theoretical insight and computational expertise, and an entire research community is devoted to
exploring the issues involved.

For a good textbook level introduction to model checking, see Huth and Ryan [72]. This
book not only introduces the basic algorithms, it also shows how they can be implemented with
the aid of OBDDs. Moreover, it discusses modal checking for the mopdaliculus (which we
introduce in Section 6.7). For a more advanced treatment, see Clarke, Grumberg and Peled [25].
Finally, for an account of model checking via automata-theoretic methods, see Chapter 17 of this
handbook.

4.2 Satisfiability and validity: decidability

It is often said that modal logic is decidable. This can be read as shorthand for the following
claim: thevalidity problemfor the basic modal languaggiyen a basic modal formula, is ¢

valid?) is decidable. That is, it is possible (ignoring constraints of time and space) to write a
computer program which takes a basic modal formula as input, and halts after a finite number of
steps and correctly tells us whether it is valid or not.

The decidability of model logic can also be viewed as a claim thas#tisfiability problem
for the basic modal languaggiyen a basic modal formula, is ¢ satisfiable in some modgl?
is decidable. That is, it is possible (again, ignoring constraints of time and space) to write a
computer program which takes a basic modal formula as input, and halts after a finite number
of steps and correctly tells us whether it is satisfiable in some model or not. The validity and
satisfiability problems ardual problems a modal formulay is valid iff —¢ is not satisfiable,
hence if we have a method for solving one problem, we have a method for solving the other. In
what follows we show that both problems are decidable; we’ll talk in terms of satisfiability.

A lot is known about the decidability of satisfiability problems for various logics, so it is not
too difficult to establish modal decidability: we can do so by reducing the problem to known
results for other logics. Here'’s an easy example. The satisfiability problem fowtheariable
fragmentof first-order logic (that is, the fragment of first-order logic in which every formula
contains only two variables) is decidable. Now, every basic modal formula can be translated into
a formula in the two-variable fragment. To see this we need simply make a small adjustment to
the standard translatiasT,. Whenever we translateaor ad, instead of choosing a completely
new variable to quantify over accessible points, we use a second fixed variablé. (§aye later
encounter anothe® or O, we flip back to the original variable, and so on. More precisely, we
redefinesT, so it always useg to quantify over accessible points, and define a twin translation
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sT, which always quantifies using Here are the key clauses:

ST (Cp) = Jy (Rey A STy(p)) STy (Cw) = 3z (Ryx A STx(9))
ST.(Oyp) = Vy (Rzy — sTy(p))  sTy(Dy) = Vo (Ryz — STu(¢)).

The interleaving ofST, andsT, guarantees that for any basic modal formulasT, (¢) will
contain only the two variables andy, and it should be clear that the modified translation is
equivalent to the original one. It follows that the satisfiability problem for the basic modal lan-
guage must be decidable: to test a modal formula for satisfiability, simply translate it with this
new version of the standard translation, and then apply the satisfiability algorithm for the two-
variable fragment to the output.

It is pleasant that modal decidability can be established so easily, but the proof isn’t particu-
larly instructive. The following semantic argument is somewhat more revealing. We shall show
that the basic modal language has finde model propertyor to put it another way, that it does
not have the expressive strength required to force the existence of infinite models. Needless to
say, this is in sharp contrast with first-order logic: even such a simple first-order formula as

Vx-Rxx AVayz(Rxy A Ryz — Rxz) AVxIyRxy

has only infinite models. In fact, the basic modal language has a rather strong form of the finite
model property. We shall show the following:

THEOREM 18 (Strong Finite Model Property). Let ¢ be a basic modal formula. b is
satisfiable, then it is satisfiable on a finite model containing at r2¥st points, where o) is
the number of subformulas of

The decidability of the modal satisfiability problem follows immediately from this result. If a
modal formulay is satisfiable at all, it is satisfiable on a model containing at 2¥st points.
As there are (up to isomorphism) only finitely many such models, exhaustive (and exhausting!)
search through them all will settle the issuex s satisfiability.

Just as important as the result is the method we shall use to prdii#réttions. These are
a standard item in the modal logician’s toolkit, and have been used to prove completeness and
decidability results for many different modal systems. The basic idea underlying the method is
simplicity itself: given a modal formule and a modeft that satisfies it, we make a finite model
M by collapsing to a single point all the points witHii that satisfy the same subformulas of
v. But there is a tricky issue: how should we define the relation on the collapsed points in such
a way thatp remains true in the finite model? Let's work through the details and see.

We shall say that a set of basic modal formulais subformula closed every subformula of
every formula inX is a member ok (that is, if o A ¢ € X then so arep andvy, and if—p € &
then so isp; and if Oy € ¥, then so isp, and so on). We now define:

DEFINITION 19 (Filtrations). Letht = (W, R, V) be a model, lek be a subformula closed
set of formulas, and let~y, be the equivalence relation on the state®btlefined as follows:

w ey v iff forall pinX: (M w = ¢ iff Mo E=p).

The official notation for the equivalence class of a painof 9t with respect tosy is |w|s,
but in what follows we’ll usually assume thatis clear from context and simply wrife|.
Let Wy = {|w| | w € W}. Supposénty, is any mode(W/, R/, V1) such that:

1. Wh=Ws.
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2. If Rwov thenRf |w]|v].
3. If Rfjw||v| then for allCp € 32, if M, v = ¢ thend, w = Op.
4. VI(p) = {Jw| | M, w k= p}, for all proposition symbolg in .

Then img is called a filtration oft throughX. In what follows we’ll drop the subscripts and
write M/ instead oftY,.

Two points should be made about this definition. First, obs®itves a filtration ofdt through
a subformula closed set of formul&@s then9t/ contains at mos2/*! nodes, wherey| is the
cardinality of . This should be clear: after all, the points®#/ simply are the equivalence
classes iV, and there cannot be more tha®! of these. Second, the previous definition does
not specify an accessibility relation dis; — it only imposes constraints (namely clauses (ii)
and (iii)) on the properties a suitable accessibility relatinshould have. That the constraints
imposed are sensible is shown by the following result:

THEOREM 20 (Filtration Theorem). LetOM/ (= (Wx, R/, V'/)) be a filtration of9) through
a subformula closed set of basic modal formulasThen for all formulasr € ¥, and all nodes
w in 9N, we havelt, w = o iff M/ |w| = o.

Proof. By induction on the structure of formulas. The case for proposition symbols is immediate
from the definition oft’, and becausE is closed under subformulas, the inductive step for the
boolean connectives is clear.

So suppos&o € ¥ and9, w = <o, Then there is a such thatRwv and9, v = 0. As
o/ is afiltration, by the first constraint aR/ (clause (ii) of the previous definition) we have that
Rf|wl||v|. As ¥ is subformula closedy € ¥, hence by the inductive hypotheSB/, |v| = o.
HenceM/, |w| = <o.

Conversely, supposeo € ¥ and9/, |w| = ©o. Then there is a state| in M/ such that
Rf |w||v| and9M/, [v| = 0. Aso € %, by the inductive hypothesiBt, v = 0. Making use of the
second constraint oR/ (clause (iii) of the previous definition) we conclude th&tw = <o.

_{

It only remains to verify that relations satisfying the constraints demand&{ afctually exist.
They do. Define:

1. R¥|w||v| iff Jw’ € |w| T’ € |v] Rw'v'.
2. RYw||v| iff for all formulas G in X: M, v |= ¢ impliesMN, w = Op.

Itis straightforward to show that both relations satisfy the required constraints. Actually, you can
show a little more: ifR7 is any relation satisfying the above constraints tinC R C R'.
For this reasonk® andR' are said to give rise to the smallest and largest filtrations respectively.
So we have proved Theorem 18: the basic modal language indeed has the strong finite model
property. As we argued above, this in turn establishes the decidability of the basic modal satis-
fiability problem. Now, as is well known, the satisfiability problem for full first-order logic is
undecidable. First-order logic is the classic example of a language where expressivity has been
purchased at the expense of decidability. The basic modal language reverses this trade-off.
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4.3 Satisfiability and validity: complexity

What do the decidability proofs just given tell us about the computational complexity of the
modal satisfiability problem? Only that it can be solved in NEXPTIME (that is, non-deterministic
exponential time). This is clear from the filtration proof: to see i decidable, we can non-
deterministically choose a model containing at n2%st) points, and then check whether or not
it satisfiesp. As we have seen from our discussion of model checking, the checking takes time
polynomial in the size of model; however as the model is exponential in the size of the input
formula, this is a complex task. The reduction to the satisfiability problem for the two-variable
fragment yields the same upper bound, as this problem is NEXPTIME-complete.

But the satisfiability problem for basic modal logic is PSPACE-complete. That is, given a
modal formulay, it is possible to write an algorithm to determine whether orpag satisfi-
able that uses an amount of computer memory that is only polynomial in the size [dbw,
most complexity theorists believe that PSPACE-complete problems are harder than the satisfi-
ability problem for classical propositional logic (the classic NP-complete problem) but easier
than EXPTIME-complete problems, which in turn are believed to be easier than NEXPTIME-
complete problems. So, given standard complexity-theoretic assumptions, the modal satisfiabil-
ity problem is probably easier than our earlier decidability proofs suggest.

How do we design a PSPACE algorithm for modal satisfiability? We cannot give a detailed
answer here, but we can point to an expressive weakness of modal logic which should make it
plausible that PSPACE algorithms for modal satisfiability exist.

LEMMA 21. Let9t = (W, R,V) be a model, letv € W, letn be a natural number, le§,, ,,
be the subset di/ containingw and all points inl¥ reachable fromw by making at most R-
transitions, and le9t be the submodglS,, .., R|s, V|s), whereR|s andV|s are the restrictions
of R andV respectively t&,, ,,. Then, for all basic modal formulas such that m¢lp) < n, we
have thatht, w = ¢ iff 9, w = ¢.

That is, if we take a modébt, and extract a submod#t from it by throwing away all points
that are more than steps away fromw, then no formula with modal operator depth of at most
n can distinguish the two models@at Modal formulas have shallow vision. And if we combine
this lemma with what we have already learned about finite models and bisimulations, we obtain
the following:

THEOREM 22. Every formulap in the basic modal language is satisfiable in a model based on
a finite tree of depth at most rad).

Proof. As model logic has the finite model property, if a modal formula is satisfiable, it is satis-
fiable on a finite modet at some pointv. As we remarked in the previous section, it is always
possible to unravel a model into an equivalent tree-based model. Now, if we udkaalebutuw,

we don't necessarily obtain a finite model, but {&sis finite) we do obtain a model based on a
tree with a finite branch factor, and this model satisfie# its root. If we then chop off all points
more thanmd(yp) away from the root we obtain a finite model which (by the previous lemma)
satisfiesp at its root. -

So every modal formula is satisfiable on a shallow tree, and we are now in a position to appre-
ciate how PSPACE algorithms for modal satisfiability work. In essence, they construct shallow
trees branch by branch. If a branch is successfully constructed (something which takes only space
polynomial in the size of the input formula, as the length of the branch is boundadi(ly)) the
branch is discarded (thus freeing up the memory) and the next branch is then constructed. There
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may be many branches, so it may take exponential time to construct them all, but as all branches
are discarded once they constructed, such an algorithm uses only polynomial space. This sketch
has neglected some important issues (such algorithms require space for recording book-keeping
details, and we need to ensure that the space used for this is not excessive) but it does describe,
in broad terms, how many modal satisfiability algorithms (notably those based on tableaux or
games) work.

But we should issue a word of warning: it's not always so easy. Yes, matters are relatively
straightforward here, but that is because we have been working withefiemodal language
over the class oéll models. If we impose restrictions on the class of models we are working
with (as we shall do in Section 5) or work with richer modal languages (as we shall do in Sec-
tion 6), or both, we can easily find ourselves faced with undecidable, or even highly undecidable,
satisfiability and validity problems.

4.4 Other reasoning tasks

We have discussed the big three (model checking, and satisfiability and validity checking) but
this by no means exhausts the reasoning tasks of interest. To conclude this section, let’s briefly
consider two others.

Although we have stressed the locality of modal logic, some problems demand a global per-
spective. In particular, if we view a modal formula as a general backgroonstraint we will
typically want it to be globally satisfied: that is, we will be interested in moé@i8lsuch that
M = . The importance of the global satisfiability problem has been strongly emphasised by
the description logic community. Indeed, description logic builds into its architecture the idea
of aTerminological BoxXor TBoX, a collection of formulas that encode background knowledge
about some domain (for example, that all men are mortal, that all Martians own flying saucers, or
that each employee has a social security number). Description logicians are interested in models
in which the TBox is globally satisfied, for these are the models that reflect all the background
assumptions.

Once the importance of background constraints is realised, it becomes clear that it is not
the pure global satisfiability task itself that is of primary interest. Rather, it isotted-global
satisfiability task given formulasy andy, is there a model which locally satisfiesand globally
satisfies)? That is, is it possible to satisfy subject to the global constrairit?

Here’s an example. Suppose we're working in a zoological setting, and are interested in the
interaction of maternal love and professional responsibility on the feeding of our furry ursine
brethren. To put it another way, suppose we have the following TBox:

bearVv human bear— (MOTHER)bear
bear — —human bear— [FEDBY](zoo-keepex mothel

Let’s call this TBoXxBEAR-CARE. The sort of queries we might be interested in posing are: is
it possible to globally satisfgeAR-CARE and, simultaneously, to locally satisfy

(MOTHER) (bearA human?

(No, it's not.) And is it possible to globally satisBEAR-CARE and simultaneously to locally
satisfy
(FEDBY)(—human A —-mothep?

(Yes, it is:BEAR-CARE doesn'’t rule out having bears as zoo-keepers. This may well be a bug in
the TBox.)
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Local-global satisfiability problems are also natural in the setting of parsing problems. It is
possible to encode various kinds of grammars (such as regular grammars or context-free gram-
mars) as modal formulas (see Chapter 19 of this handbook for a discussion of such approaches).
Then, given a string of symbols, the parsing problem is to decide whether it is possible to find
a model which embodies all the constraints encoded in the grammar, and which simultaneously
satisfies the formula encoding the input string. That is, we would like to globally satisfy the
modal formulaGRAMMAR and simultaneously locally satisfifPUT-STRING.

Unsurprisingly, both the global, and the local-global satisfiability tasks are tougher than the
ordinary satisfiability problem:

THEOREM 23. The global satisfiability and the local-global satisfiability tasks for basic modal
languages are both EXPTIME-complete.

Proof. The stated result is an immediate consequence of Hemaspaandra’'s [118, 65] complexity
results for the universal modality (we introduce the universal modality in Section 6.1). But the
result holds for even stronger languages; see De Giacomo and Lenzerini [28] for related results
for more expressive description logics. -

EXPTIME-complete problems are decidable but provably intractable: they contain problem in-
stances that will require time exponential in the size of the input to solve (which can mean that
they require more time than the expected lifetime of the universe). This, however, is a worst-
case measure. One of the most important recent developments in computational logic has come
from the description logic community, who have shown it is possible to specify and implement
tableaux-based algorithms for such problems that are remarkably efficient in practice. Moreover,
interesting work exists on performing modal theorem proving via (non-standard) translations into
first-order logic, so that optimised first-order resolution provers can be applied to the task. For a
detailed discussion and comparison of these methods, see Chapter 4 of this handbook, and for a
deeper examination of the complexity of modal logic, see Chapter 3.

We conclude with a remark on thmodel comparisomask. As bisimulation is the modally
fundamental notion of graph equivalence, it is natural to wonder how difficult it is to determine
when two models are bisimilar. The corresponding problems for first-order logic (namely, testing
for graph isomorphism) is thought to be difficult: there is no known polynomial algorithm for
testing for graph isomorphism, though the problem has not been shown to be NP-complete either.
In fact, the problem of identifying isomorphic graphs is sometimes regarded as giving rise to a
special complexity class of its own.

Testing for bisimulation, however, turns out to be computationally tractable, and there are el-
egant polynomial algorithms which work by discarding pairs of point that cannot make it into
any bisimulation (see Dovier, Piazza and Policriti [33]). Again an expressivity result lies be-
hind this result: the maximal bisimulation between two mo@&lsnd9t is explicitly definable
in a first-order fixed-point language over the disjoint unighw 9t of the two models. Such
languages have been studied extensively in computer science, and they are known to have good
computational behaviour.

Let us summarise our discussion. For a number of tasks, the basic modal language (interpreted
over the class of all models) is computationally better behaved than the corresponding first-order
language (interpreted over the same models). Figure 17 summarises the relevant facts (PTIME is
short for Polynomial Time). Of course, this better computational behaviour comes about because
the basic modal language is not nearly as expressive as first-order logic. Thus the interesting
questions are: what are the trade-offs? And can this better computational behaviour be lifted to
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Model Checking Satisfiability Model Comparison
FOL | PSPACE-completsg Undecidable in NP
ML PTIME PSPACE-complete PTIME

Figure 17. First-order logic and modal logic: computational properties summarised.

more expressive modal logics, and (if so) how? We shall revisit these questions in the following
two sections.

5 RICHER LOGICS

Until now, we have deliberately said rather little about mddgicsand what they are. Instead we
have acted as if there was only one modal logic of any interest, namely the set of valid formulas
(that is, the set of formulas satisfied at all points in all models) or, to put it syntactically, the set of
formulas generated by the minimal proof systi€rfwhich we defined at the start of Section 2.2).

But traditional presentations of modal logic tend to emphasisenthiéplicity of modal logics,

and devote a great deal of attention to logics richer thalogics with such names ds K4, S4,

S5 GL, andGrz. Where do richer modal logics come from?

As a first approximation (we’ll shortly see why it's only an approximation) we might say that
richer logics emerge at the levelfoAmes via the concept drame validity Letp(py, ..., p,) be
a basic modal formula built out of the proposition letters. . ., p,,. We say thato(p1, ..., pn)
is valid on a frame§ = (W, R) at a pointw if, for each valuatiori/ for its proposition symbols
P1,- - - Pn, We have thap is satisfied in the resulting modelat in such a case we wrif§, w =
. We sayp is valid ong if it is valid at each point ir§, and we write this a§ = ¢. Moreover,
we say that a modal formula iglid on a class of frameB if it is valid on each frame§ in F.

Note that a valid formula (as defined in Section 2.1) is simply a formula that is valid on the class
of all frames.

The starting point for this section is the observation that different applications of modal logic
typically validate different modal axioms, axioms over and above those to be found in the mini-
mal systenK. For example, if we view our models as flows of time, it is natural to assume that
the accessibility relation is transitive, and (as the reader should check) any instance of the schema
Oe — OO is valid on the class of transitive frames (for example, the formyla— OOp is
valid on such frames, ard(p V ¢) — OO(p V ¢) is too). However no instance of this schema
(which for historical reasons is called 4) is provabl&inso if we want a logic for working with
temporal flows we should add all its instances as extra axioms, and doing so yields the logic
known ask4. Or suppose we are modeling situations where the frame relation has to be treated
as a partial function. As the reader should check, all instances of the sehema Oy are valid
on the class of such frames, and none of them can be prow€dsao once again we should add
them as extra axioms. Doing so yields the logic cakedt ;.

We begin this section by briefly discussing such axiomatic extensiofdsadittle further. But
our real interest is not the richer logics that arise by adding extra axioms (for an introduction to
this topic, see Chapter 2 of this handbook) rather it centres on the following semantic questions:
what can modal formulas say about frames, and how do they say it? As we shall see, there
is a fundamental expressivity distinction between the level of models and the level of frames:
whereas modal logic at the level of models is the bisimulation invariant fragment of first-order
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logic, at the level of frames it is a fragment of second-order logic.

5.1 Axioms and relational frame properties

One of the most attractive features of modal logic is the illumination provided by the fact that
modal axioms reflect properties of accessibility relations. A typical modal completeness theorem
reads like this:

THEOREM 24. A formula is provable irS4iff it is true in all models based on frames whose
accessibility relation is transitive and reflexive.

Proof. See Chapter 2 of this handbook (or indeed, virtually any introduction to modal logit).

That is, the theorems &4 are true in all graphs with a transitive and reflexive relation, while
its non-theorems have some transitive and reflexive counter-model; the additional axioms re-
flect a simple visualisable geometric condition in the semantics. There are many techniques
for proving such completeness results, ranging from simple inspection of the canonical model
constructed from all complete theories in the logic, to various types of model surgery (such as fil-
tration, unraveling, and taking bounded morphic images). Moreover, the motivations for proving
modal completeness theorems may differ. Sometimes we start with an independently interest-
ing proof system and try to find a useful corresponding class of frames. The classic example
of this is the proof systersL, that isK enriched with all instances of thedb axiom schema
O(0ep — ¢) — Ogp, which arose via the study of arithmetical provability (see Chapter 16 of
this handbook) and was later proved complete with respect to the class of finite trees (where the
binary relation interpreting the modalities is the transitive closure of the one-step daughter-of tree
relation). Sometimes, however, we might start with a natural model class — say an interesting
space-time structure — and try to axiomatise its modal validities. The literature is replete with
both variants.

Nowadays a lot is known about axiomatic extension& of-or a start, it turns out that there
are uncountably many suctormal modal logicsas they are often called. It is usual to identify
a normal modal logic with the set of formulas it generates, and we say that a modal logic is
consistent if it does not contain all formulas. This identification immediately induces a lattice
structure on the set of all such logics. The cartography of this landscape is an object of study in
its own right; here we shall only mention that, because of the following result, it contains two
major highways.

THEOREM 25. Letld be the normal modal logic generated Kyenriched with all instances of
the axiom schema < Ogp, and letUn be the normal modal logic generated Kyenriched with
the axiomd L. Every consistent normal modal logic is either a subdeir Un.

Proof. See Makinson [92] for the original (algebraic) proof. After we have introduced generated
submodels and bounded morphisms for frames we will be able to sketch the semantic ideas that
underly this result, and we shall do this shortly. -

Now, as the reader should check, every instancg ef O¢ is valid on frames which consist

of a collection of isolated reflexive points, andL is valid on frames consisting of a collection

of isolated irreflexive points. Moreover, using standard techniques it is easy to sholnthat

is complete with respect to the first frame class, &hdvith respect to the second. Thus the
semantic content of Theorem 25 is that every normal modal logic is contained in the logic of one
of these frame classes; for examd lies on the first road, an@L on the second.
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But the most important fact to have emerged about normal modal logics isdhatl of
them have frame-based characterisations. In fact, frame completeness results (such as the result
for S4 noted above) are the exception rather than the rule. Thus our earlier remark that richer
logics emerged at the level of frames via the concept of frame validity was very much a first
approximation: the notion of frame validity simply does not provide an adequate semantic basis
for studying all normal modal logics. Here is a concrete example fofirme incompleteness
result:

THEOREM 26. Let TMEQ be the normal modal logic obtained by enrichikgwith all in-
stances of the following schemags: — <o (T), OCe — COp (M), O(Cp A OY) —
O(Ce vV Op) (E), and (O A O(p — Op)) — ¢ (Q). There is no class of frames that vali-
dates precisely the formulas TTMEQ.

Proof. See van Benthem [128]. o

Such incompleteness results (which were first proved in the early 1970s by Thomason [124] and
Fine [43]) were important in the development of modal logic. For a start, they forced modal
logicians to examine alternative ways of semantically characterising normal modal logics, and
this lead to a renaissance in algebraic semantics of modal logic (see Chapter 6 of this handbook
for more on this topic). But they also had another effect, one more relevant to the present chapter:
they stimulated a wave of semantic research at the level of frames. This new wave of research
was centred around the notion of frame definability, the topic to which we now turn.

5.2 Frame definability and undefinability

Before getting to work, a brief remark. There is another way of thinking about axiomatic exten-
sions ofK. Instead of viewing them as giving rise to brand new modal logics, we can simply view
them agheoriesconstructed over the minimal logic in much the same way as a first-order the-
ory (of say, linear orders) is constructed over the set of first-order validities. Nothing of substance
hangs on this shift of perspective, but it fits more naturally with our focus on expressivity.

So, bearing this in mind, let’'s pose the first question: what can modal formulas say about
frames? A natural way to approach this is to introduce the concefpamie definability We
shall say that a modal formuladefines a class of framésiff it is valid on precisely the frames
in F. That is, not only musp be valid on every frame if, it must also be possible to falsify
on any frame that is not iR. So, what classes of frames can modal languages define? Here are
some simple examples:

PROPOSITION 27.

1. Op — O0Op defines the class of transitive frames; that is, frames suchvthgt( Rxy A
Ryz — Rxz).

2. Op — Op defines the class of frames where the frame relalias a partial function; that
is, frames such thatzyz(Rzy A Rxz — y = 2).

3. p « Op defines the class of frames which consist of isolated reflexive points; that is,
frames such thatzy(Rxx A (Rxy A Ryx — © = y)).

4. O 1 defines the class of frames which consist of isolated irreflexive points; that is, frames
such thatvzy—Rxy.
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Proof. We have already asked the reader to check that these formulas are valid on the class of
frames in question. So to complete the proofs of these definability claims we need merely check
that each formula can be falsified on any frame that does not belong to the relevant class.

Let's deal with the second example. Supp¢B€ R) is a frame whereR is not a partial
function. This means that there is a pointc W that has two distincR-successors, sayand
v. It follows that we can falsifyCp — Op on (W, R) atw. For letV be the valuation that makes
p true atu and nowhere else. ThéiV, R, V), w = Op but (W, R, V), w = Op, sincep is not
true atv. So we have falsifiedbp — Op on (W, R) as required. -

A remark on terminology. Instead of saying, for example, that— OOp defines the class
of transitive frames, we often simply say thap — OOp defines transitivity. It is also usual to
say thatdp — OOp corresponds (at the level of framesMoyz(Rzy A Ryz — Rxz), or that
Vayz(Rxy A Ryz — Rxz) is a frame correspondent fatp — OOp.

Now for an important question: how do we go about showing that a class of freanestbe
modally defined? Answering such questions is typically more demanding than proving the type
of result noted in Proposition 27, for instead of checking that a given formula defines a given
frame class, we now have to prove that no modal formula is capable of this. How can we prove
such general results? By finding ways of transforming frames that preserve frame validity. For if
we can show that a class of franmiess not closed under such a transformation, it follows that
is not modally definable. Let’s take a closer look.

The first step is to find transformations that preserve frame validity. Three lie close to hand: the
formation of disjoint unions, generated submodels, and bounded morphic images. In Section 3.2
we defined these constructions at the level of models, and they can be lifted to the level of
frames simply by ignoring the requirements imposed on the valuations. For example, a bounded
morphism between framég$V, R) and(W”’, R’) is a functionf from T to W' that satisfies the
morphism condition (ifRwv, thenR' f(w) f (v)) and the zag condition (i’ f (w)v’, then there
exists av such thatf (v) = v and Rwv), and we say that fram@V’, R') is a bounded morphic
image of frame(W, R) if there is a surjective bounded morphism fra#v, R) to (W', R').

Lifting these constructions to the level of frames immediately gives us three validity preservation
results:

THEOREM 28. For all basic modal formulag we have that:

1. Let{3; | i € I} be a family of frames. Then§; = ¢ for everyi in I, we have that
l#F: = ¢ too. That is, frame validity is preserved under the formation of disjoint unions.

2. LetF be a generated subframe $f Then if§ E ¢, we have tha§’ = ¢ too. That is,
frame validity is preserved under the formation of generated subframes.

3. LetF andg’ be frames ang a surjective bounded morphism fr@gito §'. Then iff = ¢,
we have thaff’ = ¢ too. That is, frame validity is preserved under the formation of
bounded morphic images.

Proof. We prove the result for bounded morphisms. Eet (W, R) andg = (W', R’) be
frames, and suppose for the sake of a contradictionghlat © but§ = ¢. This means that
for some valuatiorV’ on§ and some pointv’ € W’ we have thatg’, V'), w’ |~ . LetV be
the valuation orfy defined byV (p) = {u € W | f(u) € V'(p)}, for all proposition letterg.
Furthermore, letv be any point such thagt(w) = w’; there must be at least one such point as
f is surjective. Then the modé§’, V') is a bounded morphic image of the modgl V'), and
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hence(F, V), w F~ . But this contradicts our assumption tiat= ¢, hence we conclude that
' | ¢ after all. -

Applying this theorem immediately gives rise to a crop of non-definability results. Here are
some simple ones. Basic modal languages cannot define the class of simply connected frames,
that is, the class of frames such thay( Rzy vV Ryxz). Why not? Because this class is not closed
under the formation of disjoint unions: taking the disjoint union of two frames with this property
clearly results in a frame without it. As a second example, the basic modal languages cannot
define the class of frames containing an isolated reflexive point. Why not? Because this class
is not closed under the formation of generated subframes. For consider a frame consisting of
two isolated points, one reflexive, the other irreflexive. This frame belongs to the required class,
however the subframe generated by the irreflexive point does not. As a third example, the class of
irreflexive frames modally definable. Why not? Because it is not closed under the formation of
bounded morphic images (recall the bounded morphism of Figure 13 which collapses the natural
numbers to a single reflexive point). But frame validity is preserved under this transformation,
hence no modal formula can define irreflexivity. For more sophisticated applications of these
validity preservation results, see van Benthem [136].

These results also give us insight into the semantic ideas behind Theorem 25. For consider
a consistent normal logic. Suppose one of the frames on which it is valid contains an isolated
irreflexive point; then (appealing to the preservation of validity under generated subframes) the
frame consisting of just that single point validates the logic too. So suppose that no frame con-
taining an isolated point validates the logic. But this means that in all frames that validate the
logic, every point has at least one successor. But if we map all the points in such a frame to a
singleton reflexive point, the mapping is a bounded morphism. Hence it follows that the logic is
validated on frames consisting of isolated reflexive points.

As we shall soon see, the three frame transformations just introduced all play a role in the
Goldblatt-Thomason Theorem, a characterisation of modally definable classes of elementary
frames. But a fourth transformation, namely the formatiounlt&filter extensiongs also needed
to complete the statement of this celebrated result, so let's take this opportunity to define this
(somewhat more complex) frame construction. First we recall a standard mathematical concept.
Given a non-empty sél’, afilter F' over W is any subset 02"V (the power set of¥) that
containsiW and is closed under finite intersection (that isXifY € FthenX NY € F) and
set-theoretic inclusion (thatis, X € FandX CY C W thenY € F). Afilter is calledproper
if it is distinct from 2"V, An ultrafilter is a proper filte/ such that for allX € 2V, X € U iff
(W\X) ¢ U. A standard result assures us that any proper filter can be extended to an ultrafilter.
Bearing this in mind, we make the following definition:

DEFINITION 29 (Ultrafilter Extensions of Frames). L&t = (W, R) be a frame. For any
X C W wedefind(X) tobe{w € W | forallv € W, if Rwvthenv € X}. Then the ultrafilter
extensionue(§) of § is defined to be the frameauf(W), R"®), whereuf(W) is the set of all
ultrafilters onWW and R"€ is the relation consisting of all pairs of ultrafiltets U’ such that for
al X CwW,ifI(X) e U,thenX € U’.

We can now state the required theorem. Note that the direction of validity preservation is
the reverse of that found in Theorem 28. That is, here frame validity is preserved from the
transformed frame (here the ultrafilter extension) back to the original one:

THEOREM 30. For any basic modal formula, if ue(¥) = ¢ theng = ¢ does too. That is,
frame validity reflects ultrafilter extensions.
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Proof. The use of ultrafilter extensions in modal logic traces back to Goldblatt [57, 58], van
Benthem [129], and Fine [44]. For a detailed proof of this theorem, see Proposition 2.59 and
Corollary 3.16 of Blackburn, de Rijke and Venema [13]. -

Although this transformation is harder to visualise than the previous three, it too gives rise to
some simple non-definability results. Here’s a nice example, taken from Goldblatt and Thoma-
son [60], showing that the class of frames satisfyingly ( Rzy A Ryy) is not modally definable.

We can see this as follows. The ultrafilter extensionlf <), the natural numbers in their
usual order, looks a bit like a gigantic lolly-pop. It has an infinite handle, an isomorphic copy
of (N, <), consisting of all the principal ultrafilters (that is, those ultrafilters which contain a
singleton sefn}, wheren is a natural number). This is followed by the lolly: an uncountable
collection of non-principal ultrafilters which are all related to one another and reflexively related
to themselves. Henaee(N, <) has the propertyz3y(Rxy A Ryy). Why? Because every point

in the frame is related to the reflexive points in the lolly. However this formula is clearly not
valid on the original fram¢N, <). As frame validity reflects ultrafilter extensions, it follows that

the class of frames satisfyinge3y(Rzy A Ryy) is not modally definable. For further discus-
sion of ultrafilter extensions from a model-theoretic perspective, see Chapter 5 of this handbook.
There is also an important algebraic perspective on ultrafilter extensions, which is discussed in
Chapter 6.

5.3 Frame correspondence and second-order logic

Now that we have some idea of what basic modal languages can (and cannot) say about frames,
we turn to the second question: how do they say it? And here we encounter something interesting.
Note that all four classes of frames mentioned in Proposition 27 are definable by simple first-
order formulas — and this is actually rather puzzling. After all, if you think about what it
means for a basic modal formuldp, ..., p,) to be valid on a frame, we see that this concept
is essentiallysecond-order we quantify across all possible valuations, and valuations assign
subset®f frames to proposition symbols.

We can make this second-order perspective precise with the help of the standard translation.
Let § be a frame, leDlt = (§, V) be any model ovef, and letw be any point in§. By
Proposition 3 we have that

& V), w @1 o) i (3, V) = STe(@)(Pr, -, Po) [z — w].

(HerePy, ..., P, are the monadic predicate symbols used to translate the propositional symbols
p1,...,pn.) How do we lift this equivalence (which lives at the level of models) to an equiv-
alence at the level of frames (the level where validity is the primary semantic concept)? Very
straightforwardly. A formula is valid on a frame iff it is satisfied at any point in the frame under
any assignment of subsets of the frame to the proposition symbols. So we only need to univer-
sal quantify over the points that can be assigned (a first-order quantification) and over the
assignments to the monadic symb#is. . ., P, (a second-order quantification). Doing so gives

us the fundamental correspondence between frame validity and second-order logic:

In short, frame validity systematically treats modal formutess the universal monadic second-
order closure of their standard first-order translations on relational models. The second-order
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upgrade of the first-order correspondence language is often callddathe correspondence
languageor thesecond-order correspondence language
Let’s look at an example. Recall that in Section 2.2 we showed that the standard translation of
p — OpwasPx — Jy(Rxy A Py). So if we ask whap — <p defines at the level of frames we
can give an immediate answer: it defines the class of frames satisfying the following monadic
second-order formula:
VPVx(Px — Jy(Rxy A Py)).

Now, it's certainly pleasant to be able to systematically calculate frame correspondences for
modal formulas in this way — but the puzzle remains. Indeed, if anything it has become more
acute. For most of the modal formulas encountered in practice correspond to simple first-order
conditions on frames, yet these conditions are systematically expressed using rather complex
second-order expressions. The translation just considered is a good example. As the reader
should checkp — <p corresponds to the first-order formufa Rz« (that is, it defines reflex-
ivity). And if you think about it, you will see that Pvx(Px — Jy(Rxy A Py)) is indeed a
rather roundabout way of expressing reflexivity. For a start, it's easy to see that this sentence
is true on any reflexive frame. Conversely, if this sentence is true on a f(@#M&), then
Pz — Jy(Rxy A Py)) must be true under any assignment to the free variabéesl P. Hence,
for anyw € W, this formula is true if we assigm to z and{w} to P. This assignment makes
the antecedent true (indeed, it is tménimalvaluation required to make the antecedent true; the
significance of this remark will become clear when we discuss the Sahlqvist Correspondence
Theorem) so we must have thag(Rxzy A Py) is true too. But this is only possible Rww.

Hence, asv was arbitrary, this means th&t must be reflexive, and thus the original second-
order sentence really does express reflexivity. As we said earlier, one of the key questions we are
interested in ihhowmodal languages talk about frames. And now we have an answer. They do
so via a detour through second-order logic.

Moreover, this detour isot eliminable. That is, while experience shows that most common
modal formulas correspond to first-order conditions on frames, some modal formulas define con-
ditions that areotelementary. A famous case i$h’s formula,0(0p — p) — Op. This defines
the conjunction of the transitivity oR with the converse well-foundedness Bf(that is, it for-
bids the existence of infinite chains of related poiatsRws Rws Rw4 Rws . . .). This condition
is non-elementary, as an appeal to the Compactness Theorem for first-order logic shows. An-
other well-known modal axiom that defines a non-elementary class of frames is the McKinsey
formulaO<Cp — <SOp. This can be shown by appealing to théwenheim-Skolem Theorem for
first-order logic. For full proof details for both thedb and McKinsey examples, see Blackburn,
de Rijke and Venema [13].

Summing up, we are confronted with an intriguing situation. At the level of frames, modal
formulas systematically correspond to second-order conditions on frames. Nonetheless, in many
common cases these second-order conditions turn out to be equivalent to first-order conditions.
This raises some interesting questions. Are there criteria that demarcate modal formulas that are
essentially first-order at the level of frames from the genuinely second-order ones? And can we
characterise the elementary frame classes that are modally definable?

5.4 First-order frame definability

As we have just learned, the link between first-order definable frame classes and modal logic is
not straightforward. Nonetheless, some elegant general results are known, and we shall briefly
discuss three of them here. We first note two results which bear upon the demarcation issue:
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the Sahlqvist Correspondence Theorem (which isolates a large class of formulas all of which de-
fine elementary classes of frames) and a model-theoretic characterisation of the modal formulas
which define elementary frame classes. Following this we discuss the celebrated Goldblatt-
Thomason Theorem, a model-theoretic characterisation of the elementary frame classes that are
basic modal definable. All three results (and others bearing on the theme of elementary frame
definability) are discussed in greater detail in Chapter 5 of this handbook.

Let’s start with the Sahlqvist [111] result. Upon closer inspection, first-order frame conditions
often arise because of the syntactic shape of the defining modal formula — for example the
quantifier shape of the first-order formula for transitivity is matched by the sequence of boxes in
Op — OOp. The following theorem gives us a natural account of such correspondences. It trades
systematically on the idea (noted when we discussed the second-order definition of reflexivity)
of substituting minimal verifying valuations in antecedents.

THEOREM 31 (Sahlgvist Correspondence Theoreifiere is an effective method for comput-

ing first-order equivalents for Sahlqvist formulas, that is, formulas of the form  with an-
tecedents constructed from atoms (possibly prefixed by boxes) using conjunctions, disjunctions
and diamonds, while consequegtgan be any modal formula with only positive occurrences of
proposition symbols.

Proof. The effective method (in the form originally introduced by van Benthem [127, 130]) is
usually called the substitution algorithm. The following example will give an idea of how it
works. The formulddp — OOp is a Sahlgvist formula and its second-order translation is

VPVx(Vy(Rxy — Py) — Vy(Raxy — Vz(Ryz — Pz))).

Now, if we could eliminate all the occurrences®fin this formula, we would render the second-
order quantification needed to express validity vacuous. Butrthe eliminated in a semanti-
cally sensible way? Because of the syntactic restrictions that Sahlqvist formulas conform to, it
turns out that we can. We do so by replaciady a first-order expression describing thaimal
valuation needed to make the antecedentpf— OOp true. Now, the minimal way of making

Op true is to make true at all successors of the point of evaluatioso the required substitution

is Pu := Rxu. Performing this substitution yields the following first-order expression:

Va(Vy(Rry — Rxy) — Vy(Rry — Vz(Ryz — Rxz))).
The antecedent is now tautologically true, and dropping it leaves us with the expression
VaVy(Rzy — Vz(Ryz — Rxz)).

But this is a first-order formula expressing transitivity. For a precise specification of the substitu-
tion algorithm, and a proof that it works as required, see Blackburn, de Rijke and Venema [13].
The heart of the proof is to show that a Sahlqvist antecedent is true under any value for its propo-
sition symbols iff it is true under itminimalvalues. -

The Sahlgvist Correspondence Theorem and its proof method are very powerful and can be
extended to far stronger modal languages. Nevertheless there are also modal formulas which
express first-order conditions on frames that are not covered by the theoretd4 Thexiom

(Op — OOp) A (OCp — <Op)
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is a conjunction of the 4 axiom with the McKinsey axiom. It defines the class of frames with
a transitive and atomic relation, that is the class of transitive frames sucitBa{Rxy A
Vz(Ryz — z = y)). But this first-order equivalence cannot be computed using the substitution
method. See van Benthem [136] or Blackburn, de Rijke and Venema [13] for further discussion.

So the Sahlgvist result doesn’t fully pin down the modal formulas that define elementary frame
classes. However model-theoretic characterisations exist. For example we have:

THEOREM 32. A modal formula defines a first-order frame property iff it is preserved under
taking ultrapowers of frames.

Proof. For the original proof, see van Benthem [130]. For an introduction to ultrapowers, consult
Chang and Keisler [23]. o

Closure under ultrapowers is an abstract feature, and it is not easy to use it to recognise whether
a given modal formula is first-order over frames. But then no simple method can be expected to
work: Chagrova [21] shows that the problem of determining whether a modal formula expresses
a first-order condition on frames is undecidable.

But now for our other question: which elementary classes of frames are modally definable?
The classic result here is the Goldblatt-Thomason Theorem. This tells us that the four frame
preservation results noted earlier are not merely necessary, they aseffilsentto characterise
first-order frame definability:

THEOREM 33 (Goldblatt-Thomason Theorem\ first-order frame property is modally defin-
able iff it is preserved under taking disjoint unions, generated subframes, p-morphic images, and
reflects ultrafilter extensions.

Proof. The left-to-right direction is just a restatement of the results noted in Theorems 28 and 30.
The real work lies in the converse. The original proof, due to Goldblatt and Thomason [60] was
algebraic; we briefly discuss this approach in Section 7.1, and an algebraic proof is given in
Chapter 6 of this handbook. Nowadays there are also purely model-theoretic proofs; see van
Benthem [132] for the earliest of these. —

5.5 Correspondence in richer languages

Throughout this section we have kept our eyes firmly on the goal of understanding modal ex-
pressivity with respect to elementary frame classes. This is an important topic (after all, we want
to understand as much as possible about the route modal logic over frames takes from monadic
second-order logic back to first-order logic) but it is also natural to wonder about the expressivity
of modal logic with respect to non-elementary frame classes. Unfortunately, it is harder to come
up with elegant answers here. In particular, we can’t expect sweeping model-theoretic character-
isations. Model-theoretic characterisations of elementary frame definability, such as Theorem 32
and the Goldblatt-Thomason Theorem, rest on the conceptual edifice of first-order model theory.
Second-order model theory is nowhere near as well developed.

Nonetheless, some interesting results are known. For example, it turns out that we can apply
the ideas underlying the proof of the Sahlqvist Correspondence Theorem beyond the confines of
first-order logic. Let's briefly consider what is involved. The following discussion is based on
van Benthem [137]. Chapter 5 of this handbook contains a more detailed discussion of related
material.
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The substitution algorithm for Sahlqvist formulas runs into difficulties with more complex
antecedents; a classic example igbls formulad(Op — p) — Op, which defines a non-
elementary class of frames. But let’s reflectwhywe compute the minimal antecedent values
for Sahlqvist formulas. In fact there are two reasons. Firstly, because Sahlqvist antecedents
are true under any value for their proposition symbols iff they true under thieimal values.
Secondly, because such minimal predicates are first-order definable. Now, as it happéits the L
antecedent does not fulfil the first-order definability criterion, but this does not mean that all that
can be said is that thedb’s formula is intrinsically second-order — for, as it turns out, there is
a smallest semantic value for the predic&t&hich will make the 16b antecedent true. This is
the set of points in the frame obtained by taking itmersectionof all predicatesP validating
O(Op — p) wherep is interpreted a$>. Such a set must exist, because the standard translation
of the Lbb antecedent has a special syntactic form. Call a first-order forg(udfa intersective
if it has one of the forms:

1. V(v (P, Q,z) — Px), with P occurring only positively in)(P, Q, x).
2. (P, Q), with P occurring only negatively in.

It is easy to show that all formulag(P) of this form have the above-mentionédersection
property. if ©(P) holds for any predicaté it holds for the intersection of all predicatds
satisfying it.

Thus it makes sense to talk abu.¢( P), theminimalsatisfying predicate. Of course, such
predicates need not be first-order definable, but it is not hard to show that minimal predicates
for intersective first-order formulas are definable in a well-known extension of first-order logic,
namely LFP(FOL), first-order logic with monotonic fixed-points (we shall introduce the idea
of monotonic fix-points in more detail when we discuss the mgdahlculus in Section 6).
LFP(FOL)has many uses in computer science; it lies between first-order and second-order logic,
and retains many useful model-theoretic properties such as invariance for potential isomorphism
(see Ebbinghaus and Flum [35] for an introductioh.Ed® (FOL)).

Now, once we have such a minimal value for the antecedent predicates, it can be substituted
into the consequent to obtain a frame equivalent just as before — though now, of course, we
obtain an equivalent ihFP(FOL). To return to our example, the standard translation of thie L
antecederity((Rzy AVz(Ryz — Pz)) — Py) is indeed intersective in the above sense. There-
fore, the corresponding frame property of th@ghLformula can be computed and (as we would
expect) the result is abhFP(FOL) formula defining the property of transitivity plus converse
well-foundedness. As a second example, consider the axiom of cyclic return:

(OpADO(p — Op)) — p.

Again, this is not a Sahlqvist formula. But again, the antecedent is intersective, and gives rise to
a simple fixed-point computation for an equivalent frame property:

Every pointz with an R-successoy can be reached from by a finite sequence of
successivél-steps.

We can express this condition ifrP(FOL) as follows. First we define the concept of transitive
closure:

R 2y =get 1S, vy. Ry V I2(Rxz A Szy).
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We can then capture the stated frame condition by insisting that:
Vay(Rry — Rtyr).

This is the beginning of a further layering of modal formulas with respect to semantic com-
plexity. For there are also modal formulas with frame equivalents which cannot be expressed
in LFP(FOL). One example is the well known axiom in tense logic expressing Dedekind Com-
pleteness of linear orders, which is not preserved under the potential isomorphism between the
rationals and the reals. And recently, van Benthem and Goranko have shown that the McKinsey
formula, whose antecedent is typically non-intersective, does not correspond t&R(FyOL)
formula.

We started this chapter by saying that process interpretation is a fundamental way of viewing
modal logic. The present discussion shows that there is a natural link between modal logic and
a far more sophisticated logic of processes, namé&llR(FOL). We will return to the process
interpretation in the Section 6 when we examine Propositional Dynamic Logic and the modal
p-calculus, stronger modal languages which, likd?(FOL), can express some non-elementary
concepts, such as transitive closure.

5.6 Remarks on computability

In Section 4 we contrasted the PSPACE decidability of modal logic with the undecidability of
first-order logic. But these results concerned satisfiability and validity on the class of all frames.
Suppose we restrict attention to particular classes of frames defined by basic modal formulas.
There is no reason to suppose that modal satisfiability and validity problems over such frame
classes will always be in PSPACE, or even that they will be decidable. And indeed, in many
cases they are not not.

In some cases, restricting attention to a certain class of frames may lower the computational
complexity. For example, suppose we restrict attention to the frames defingd by Op, that
is, the class of frames in whicR is a partial function. Then the task of testing basic modal
formulas for satisfiability becomes NP-complete, that is, no worse than the satisfiability problem
for propositional logic. This is because (as the reader can easily check) if a basic modal formula
o has a model based on a frame in this class, then it has not only has a finite model in this class,
but a model containing at most+ 1 points, wheren is the number of modalities ip. Thus
a non-deterministic algorithm which guesses a model, checks that it belongs to the frame class,
and verifies that the formula is satisfied on it, runs in time polynomial in the sigze of

But restricting attention to particular frame classes can easily result in undecidable problems.
A recurring theme is the distinction between tree-like and grid-like models. We have already
discussed why tree-like models are relevant to modal decidability over the class of all models;
here we'll merely add that many more modal decidability results can be proved by appealing to
Rabin’s Theorengsee [107]), which in its simplest form shows that the monadic second-order
theory of binary branching trees is decidable. Grid-like models, on the other hand, are (roughly
speaking) those that contain regions that look ke N (the product of the natural numbers with
itself) under two orderings: the horizontal ordering (thatjsk)R"(j + 1, k)), and the vertical
ordering (thatis(j, k) R"(j, k + 1)) which together give rise to the characteristic grid-like shape.
Now, it is hard to give precise generalisations, but experience shows that while even very strong
modal languages tend to be decidable over tree-like models, even quite weak languages can be
undecidable over grid-like models; we shall note such an example in Section 6 when we discuss
combinations of modal logics. Such undecidability results ultimately trace back to the possibility
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of encoding theéN x N tiling problem which is known to be undecidable. For a detailed account
of the tiling problem, and a proof that it is undecidable, see Berger [12]. Here we’ll simply say
that it is essentially a geometrical puzzle. We are presented with a finite collection of square tile
types, of fixed orientation. Each edge of each tile type is coloured.NrkeN tiling problem
asks: is it possible to write an algorithm which when presented with such a collection of tiles
type, can correctly determine whether or Biot N can be tiled, using only tiles of the given type,
in such a way that colour on adjacent tile edges match? That is, is it possible to place a tile (of
one of these types) on each pointi N, in such a way that colours match both vertically and
horizontally? For some tile types, this is possible, for others it is impossible. However there is no
algorithm for deciding for which tile types this can be done; it is a simple, and elegant, example
of a computationally undecidable problem. Showing that a modal logic is strong enough to
encode this problem is often a straightforward way of showing its undecidability; see Blackburn,
de Rijke and Venema [13] for examples of how to use the tiling problem in this way.

In a slogan: trees tend to be safe, but beware of grids. Somewhat poetically, we can imag-
ine modal logic as a small boat navigating somewhere on the border between decidability and
undecidability, as Figure 18 shows.

Decidable

Rabin's Theorem Undecidable

Tiling Problem

Figure 18. Modal logic: tacking between safety and danger.

Furthermore, it is important to realise that undecidable problems arise even when attention is
restricted to finite frames; see, for example, Urquhart [126]. And indeed, even in the finite case,
undecidability turns out to be the norm. It is not difficult to show that there are non-denumerably
many distinct frame satisfiability problems over finite frame classes (an elegant demonstration
of this, due to Spaan [118], is given as Exercise 6.2.4 of Blackburn, de Rijke and Venema [13]).
As there are only denumerably many computable functions, undecidability is almost always
guaranteed.

So what about recursive enumerability? That is, if we restrict attention to a class of frames
that is defined by a modal formula, is the theory of this frame class (that is, the set of formulas
valid on all framed) recursively enumerable? Well,Kis elementary, the answer is yes:

PROPOSITION 34.Suppose thafF is an elementary class of frames defined by a basic modal
formulay. Then the set of basic modal formulas that are valid on all framdsigrecursively
enumerable.

Proof. As F is an elementary class thatdefines,p corresponds to some first-order formula
«. Now a basic modal formula is valid on frames fory iff its second-order translation
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VP - P,VasT,(¢) is true in all models of the first-order formuda that is, iff
aE=VP - PVzST,(Y),

wherel= is classical entailment. But asis first-order, the predicates, - - - P, do not occur in
« and hence this is equivalent to

o = Vst (v).

But this is a first-order entailment, and as such entailments are recursively enumerable the result
follows. 4

However once we move beyond the elementary frame classes, even recursive enumerability is
lost. A key result here is Thomason’s [125] reduction of the standard consequence relation for
the second-order correspondence language tglti®l frame consequencelation for a basic
modal language with one modality. A basic modal formgles a global frame consequence of
T if for all framesg, if § = T, thenF = . It follows that global frame consequence is not
recursively enumerable. Indeed, it is ev8frcomplete, which means it is as hard to decide as
the existential second-order theory of the natural numbers under the less-than-or-equal ordering.
To put it another way: this is an example diighly undecidabl@roblem. For further discussion
of Thomasons’s work in this area, see Chapter 7 of this handbook.

6 RICHER LANGUAGES

So far we've been dealing almost exclusively with the basic modal language. We've seen that the
key to its expressive power lies in the notion of bisimulation and that (at least when interpreted
over the class of all models) it has better computational properties than first-order logic. All in
all, the basic modal language is really rather elegant, so we might well be tempted to ask: is it
possible to lift (at least some of) its attractive properties to stronger languages? That is, can we
design richer modal languages that retain, or even enhance, those features that make the basic
modal language special? In fact, modal logicians have been experimenting with richer logics for
years, and in this section we survey some of their work. As we shall see, this line of work adds a
new dimension to our understanding of modal logic and relational semantics.

But what should count as a richer modal language? It's easier to explain what shouldn't.
Here’s an obvious example. It is straightforward to extend our basic definitions toppayaxdic
modalities(that is,n-place diamonds and boxes). Simply work with models in which there is an
n + 1-place relationkR™ for everyn-place diamondm). We interpret(m) using the following
satisfaction clause:

Mw E (m)(p1,...,p,) Iiff forsomewvy,...,v, € W such thatR™wv; ... v,
we havedlt,v; = ¢ and... anddM, v, = o,.

Now, suchn-place modalities are undeniably useful for certain purposes, especially when
interpreted over restricted classes of frames. For example, when working with spatio-temporal
structures, we might want to add a three place modality to capture the notion of “between”, or
we might want to explore the logical theory of function composition, as is done in the branch of
modal logic known as arrow logic (see Marx and Venema [94]). Nonetheless, when working with
the class of all models, developing the basic semantic theory (standard translation, bisimulation,
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and so on) of polyadic modal operators is essentially a matter of sprinkling our earlier work with
additional indices.

As we shall see, the richer languages explored in this section offer much more. Moreover,
their richness takes us in many different direction. Sometimes the enrichment consists of taking
a standard language and insisting that a modality be interpreted by some mathematically fun-
damental relation (the universal modality is a good example). Sometimes the enrichment takes
the form of more complex satisfaction definitions (both temporal logic with Until and Since and
conditional logic are examples of this). In other cases, syntactic enhancements are introduced
to support novel semantic capabilities (hybrid logic, propositional dynamic logic, and the modal
p-calculus all do this) and in one case (the guarded fragment) we enrich by abandoning modal
syntax and using first-order syntax instead. Moreover, it is also possible to enrich by combining
logics. For example, we might combine two propositional modal logics to enable some applica-
tion domain to be more accurately modeled, or we might combine modal logic with first-order
logic, a move which takes us to the historical heartland of philosophical applications of modal
logic. As we shall see, modal logicians have been extremely creative when it comes to devising
richer languages.

Of course, this variety raises a question of its own: what, if anything, do all these richer
languages have in common? That is, what makes them all modal? This is not an easy question
to answer. Nonetheless, as we work our way through this landscape a number of themes will
recur: robust decidability, the importance of bisimulations, and characterisations of fragments
of first- and second-order logic. As we shall see at the end of the section, the idea of restricted
guantification that underlies the guarded fragment goes a long way towards accounting for these
properties, for both first- and second-order enrichments. Moreover, it is possible to draw on ideas
from abstract model theory and prove Lindstr-style characterisation results. In short, we will
often be able to lift much of the fundamental semantic theory for basic modal logic to a whole
new level, a good indication that the enrichments discussed below are, in an important sense,
genuinely modal.

6.1 The universal modality

Time to feed the bears again. As we said in Section 4, some problems demand a global perspec-
tive. We sometimes want to view a modal formula as a general background constraint, something
that must be satisfied atl points in a model. Indeed, because of the importance of background
constraints, in many practical situations we are primarily interested in the local-global satisfia-
bility problem, which we formulated as follows: given basic modal formylaand, is there
a model which locally satisfieg and globally satisfie®? Now, description logic, with its two
level architecture of TBox (which impose general constraints) and ABox (which give informa-
tion about particular individuals), acknowledges the importance of this problem (the information
in TBoxes has to be globally satisfied, while the information in ABoxes only has to be locally
satisfied). But the ability to impose global constraints is not incorporated into description logic
concept languages (which are essentially notational variants of the basic modal languages we are
familiar with) and this raises an interesting question. Is it possible to internalise the notion of
global satisfiability in a modal language? And if so, what happens?

Let’s introduce theuniversal modalityand find out. To keep things simple, suppose we are
working in a language with just one modality. We shall add a second modality, and willEvrite
for its diamond form, and for its box form. The interpretation & andA is fixed: in any model
om = (W, R, V), both modalities must be interpreted using the universal rel&tiorn W. That
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is, the satisfaction definition for these modalities is:

M, w = Ep iff thereisau € W suchtha®lt,u |= ¢
M, w = Ap iff forall we W we havedl,u = ¢.

ThusEyp scans the entire model for a point that satisfiesvhile Ay asserts thap holds ev-
erywhere. We have imported the meta-theoretic notion of global truth into our modal object
language, or to put it another way, we have internalised the TBox. Accordingly, wg tiadl
universal diamongandA theuniversal box If it is irrelevant whether we meag or its dual, we
simply talk of theuniversal modality

How can we be sure that adding the universal modality really increases the expressive power
at our disposal? That is, are we certain tBadnd A are not already definable in the basic
modal language? We are. One way to see this is via a bisimulation argument (see Example 2.4
in Blackburn, de Rijke and Venema [13] for such a proof). But an easy complexity-theoretic
argument also establishes this. letandy be basic modal formulas. Then the forméa
expresses the global satisfiability problem (for the basic modal language) in our new language,
and the formulap A Ay expresses the local-global satisfiability problem (for the basic modal
language) again in our new language. Now, we remarked in Section 4 that both these problems
are EXPTIME-complete. However the satisfiability problem for the basic modal language is
PSPACE-complete. Hence (assuming that PSPACE is strictly contained in EXPTIME , the stan-
dard assumption) our ability to express these problems in the enriched language shows that the
apparent increase in expressive power is genuine.

This in turn raises a new question. Because it can encode these problems, the satisfiability
problem for the enriched language is at least EXPTIME-hard. But are some problem-instances
even harder? No. Everything is solvable in EXPTIME.

THEOREM 35. The satisfiability problem for the basic modal language enriched with the uni-
versal modality is EXPTIME-complete.

Proof. See Hemaspaandra [65], or her earlier PhD thesis Spaan [118]. =

But the universal modality not only gives us extra expressivity at the level of models, it also in-
creases our ability to define new classes of frames. Moreover, an elegant variant of the Goldblatt-
Thomason Theorem holds for the enriched language. We’'ll discuss this result shortly, but let's
first consider two examples of newly definable frame classes.

The class of frames of cardinality less than or equal to some natural nunfthext is, frames
in which |IW| < n) is not definable in the basic modal language. Why not? Because basic
modal validity is closed under the formation of disjoint unions. Hence any basic modal formula
o which allegedly defined this frame class could easily be shown to fail: simply by sticking
together enough frames we could validaten frames of cardinality greater than

But this conditionis definable with the help of the universal modality:

n+1

)\ Epi = \/ E(vi A pj).
i=1

i#]

As the reader can easily check, this formula is valid on any frame whiéfe< n, and can be
falsified on any larger frame (in essence, the formula encodes the pigeonhole principle for
pigeons and: holes). It follows that validity in the enriched language is not preserved under the
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formation of disjoint unions. This, of course, is as it should be. We want a genminersal
modality, not something that can be fooled by the addition of new components.

Here’s a second example. The conditidrdy Ryz (that is, every point has a predecessor)
is not definable in basic modal logic. Why not? Because modal validity is preserved under
the formation of generated subframes. Any basic modal formula which putatively defined this
class would have to be valid on the frarfi¢, R), where Rnm iff n > m, the natural numbers
under the reverse ordering. But (by preservation under generated subframes) it would then have
to be valid on the subframe generated by any numbeBut in any such subframe, has no
predecessor, hence the condition is not basic modal definable.

But it is definable with the help of the universal modality:

p — EOp.

It is easy to check that this formula defines the required condition, hence it follows that validity
in the enriched language is not preserved under generated subframes. Again, this is the way it
should be. A genuinely universal modality will not let us throw away points: its purpose is to
keep an eye on the entire frame. It should be intolerant of both additions (disjoint unions) and
deletions (generated submodels).

And now for the promised result: when it comes to defining elementary frame classes, in-
tolerance towards disjoint unions and generated submodels is precisely what distinguishes the
enriched language from the basic modal language. For the following result is the Goldblatt-
Thomason Theorem for the basic modal language, with closure under disjoint unions and gener-
ated subframes stripped away.

THEOREM 36. A first-order definable class of frames is definable in the basic modal language
enriched with the universal modality iff it is closed under taking bounded morphic images, and
reflects ultrafilter extensions.

Proof. See Goranko and Passy [61]. -

Three comments. First, adding the universal modality also increases our ability to define
non-elementary frame classes. For example, the class of frames where the converse of the acces-
sibility relation R is well-founded (that is, where it is impossible to form infiniResuccessorship
chains) is not definable in basic modal logicdt's formula,0(0p — p) — Op doesn’t quite
pin this condition down (recall that it defines the conjunction of transitivity and converse well
foundedness). But the followingdb-like formula in the enriched language does:

A(E\p — p) — p.

(This example is from Goranko and Passy [61], the key reference on the universal modality.)
Second, it is straightforward to extend the definition of bisimulation so that it works for the basic
modal language enriched with the universal modality; all that needs to be done is to insist that the
bisimulation betotal, that is, that every element in each model is related to at least one point in
the other; see de Rijke [30] for a brief discussion. Third, the universal modality has a big brother,
the difference operatar The diamond form of this operator is writtdi, and Dy is satisfied at

a pointw in a model if and only ify is satisfied at somdifferentpoint v (that is, the difference
operator is interpreted using teerelation onWW). The difference operator is strong enough to
define the universal modalityly is justy vV Dy) but D cannot be defined using (we leave

the proof as an exercise). The difference operator arises naturally in many setting and, like the
universal modality, has a smooth meta-theory; see de Rijke [29] for more information.
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6.2 Hybrid logic

Basic modal languages have an obvious expressive weakness: they cannot name points. We
cannot say this happen#étken or that somearticular individual has some property, or that two
distinct sequences of processes take us from the current state to the same state. For example, in
Figure 4 we let the nodes represent particular individuals such as Terry and Judy — but the basic
modal language doesn't let us pick out these individuals. First-order logic, of course, lets us do
this. We use constants to name individuals of interest, and the equality symbol for reasoning
about their identity. No analogous mechanisms exist in basic modal logic.bdsie hybrid
languageis the result of adding them.

At the heart of hybrid logic lies a simple idea, first introduced by Arther Prior [104, 105] in
the 1960s: sort the propositional symbols, andfaseulas as termsLet’s do this right away.
Take a language of basic modal logic (with propositional sympplg r, and so on) and add
a second sort of propositional symbol. The new symbols are catiednals and are typically
written 4, 7, k, andl. Both types of propositional symbol can be freely combined to form more
complex formulas in the usual way. And now for the key charigsist that each nominal be
true at exactly one point in any modeThat is, insist (for any valuatioi” and nominat) that
V (4) be a singleton set. We call the unique poin¥if¥) thedenotationof <. A nominal ‘names’
its denotation by being true there and nowhere else.

This change is far from negligible: already we have a more expressive logic. Consider the
following basic modal formula:

S(rAp)AO(rAg) — O(pAg).

This formula can be falsified, as thewitnessing ang-witnessing points given by the antecedent
may be distinct. But now consider the following hybrid formula:

SUAP)ANCENG) — O(pAg).

This is identical to the preceding formula, except that we have replaced the propositional symbol
r by the nominali. But the resulting formula is valid. For now we have extra information: the
p-withessing and;-witnessing successors both makiue, so they are true at the same point,
namely the denotation of

The addition of nominals is the crucial step towards the basic hybrid language, but we need a
second ingredient tocsatisfaction operatorsThese are operators of the fofm, wherei is a
nominal. The formul&®;y asserts thap is satisfied at the (unique) point named by the nominal
i. Thatis:

M w = Qp iff M uE p, whereuis the denotation of.

Syntactically, satisfaction operators are modalities. And they are semantically well behaved. For
a start, all instances of the modal distribution schema are valid:

Qi(p — P) — (Qip — Q1).

Moreover, satisfaction operators also admit the modal generalisation lavis ifalid, then so is
@, (for any choice ofi). Hence satisfaction operators are normal modal operators. Moreover,
they are self-dual modalities, for all instances@fy «— —@;—p are valid. So we are free to
regard satisfaction operators as either boxes or diamonds.

But for present purposes, the most important point about satisfaction operators is that they
give us a modal perspective on the equality relation. To see this, note that formulas like

@;j
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are well formed. What does this formula assert? It says that “at the denotatipthefnominal
j is satisfied”, or to put it another way, “the point nameid identical to the point namegf'.
Hence the following schemas are valid;: (reflexivity of equality),@;j — @;i (Symmetry of
equality),@;j A @Q;k — @;k (transitivity of equality), and®;p A Q;5 — @, (replacement).
As we hoped, a modal theory of equality is emerging.

We will shortly characterise this theory, but before doing so let’s glance at what is happening
at the level of frames. Here too there is an increase in expressivity. None of the four first-order
definable frame conditions listed below can be defined in basic modal logic. But it is easy to
check that each is defined by the hybrid formula written next to them:

Ve-Rxx i1 — 01 (irreflexivity)

Vay(Rxy — —Ryx) i — 2000 (asymmetry)
Vzy(Rxy A Ryx — x =y) i — 001 — 1) (antisymmetry)

Vay(Rxy V x =y V Ryx) Q;01 VvV Qi V@O (trichotomy)

And now for the main result. Hybridisation has given us some sort of modal theory of equal-
ity. But how much of the corresponding first-order theory have we captured? Of course, now
when we talk about “corresponding first-order theory” we mean: theory in the first-order corre-
spondence languagmriched with constants and the equality symbol

The first step towards an answer is to extend the standard translation to cover nominals and
satisfaction operators. So enrich the first-order correspondence language with constants and
the equality symbol; to keep the notation uncluttered, we'll re-use the nominals as first-order
constants. Then add the following clauses to the standard translation:

ST.(i) = (z=1)
ST.(Qip) = STi().

That is, nominalg are translated into first-order constantand satisfaction operators are trans-
lated by substituting the relevant first-order constant for the free-varialNete that this transla-
tion returns first-order formulas with at most one free variahleot exactly one. This is because
a constant may be substituted for the free occurrenae Bbr example, the hybrid formul@;i
translates into the first-ordeentence = i.

The second step is to extend the notion of bisimulation given in Definition 5 to make it suitable
for the basic hybrid language and for the constant-enriched first-order correspondence language:

DEFINITION 37 (Bisimulation-with-names). A bisimulation-with-names between madiiels
= (W,R,V)and' = (W', R',V') is a non-empty binary relatiof’ between their domains
(thatis,F C W x W’) such that whenever Ew’ we have that:

Atomic harmony: w andw’ satisfy the same proposition symbols, and the same nominals.
Zig: if Rwwv, then there exists a point (in M) such thaw Fv' and R'w’v’, and
Zag: if R'w’v’, then there exists a point(in 1) such thaw Ev’ and Rww.

Closure: All points named by nominals are related By

Itis easy to check that all basic hybrid formulas are invariant under bisimulations-with-names;
the proof is an easy extension of Lemma 9. More interestingly, such bisimulations also give rise
to a Characterisation Theorem:

THEOREM 38 (Hybrid Characterisation Theorenthe following are equivalent for all first-
order formulasp(x) in at most one free variable:
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1. ¢(«) is invariant for bisimulation-with-names.

2. ¢(z) is equivalent to the standard translation of a basic hybrid formula.

Proof. That clause (ii) implies (i) is a more or less immediate. The hard direction is showing that
clause (i) implies (ii). The original proof can be found in Areces, Blackburn and Marx [6H

In short, basic hybrid logic is a simple notation for capturxgctlythe bisimulation-invariant
fragment of first-order logic with constants and equality, or to put it another way, basic hybridi-
sation is a mechanism for equality reasoning in propositional modal logic. And it comes cheap.
Up to a polynomial, the complexity of the resulting decision problem is no worse than for the
basic modal language we started with:

THEOREM 39. The satisfiability problem for the basic hybrid language over arbitrary models
is PSPACE-complete.

Proof. See Areces, Blackburn and Marx [6]. %

A number of stronger hybrid languages have also been explored. One of the most interesting
extensions is to addl (the downarrow binde). This binds occurrences of nominals within its
scope to the point of evaluation. That is, to evaluBitew =]i.@, we evaluate witht, w = ¢
but with all occurrences of the nominathat were bound by now interpreted as naming (for
details on how to make this informal explanation precise, see Chapter 14 of this Handbook). To
put it another way]| lets us create a name foere and this immediately increases the expressive
power at our disposal. For example, in any mdditlthe formulali.—<1 is true at precisely the
irreflexive points; as we noted earlier, no such formula exists in the basic modal language, and
indeed, no such formula exists in the basic hybrid language either.

Moreover, | interacts beautifully with@. Intuitively, | stores new values for nominals, and
@ allows us to retrieve them. As an example of this interaction, consider the following formula
which is true in any model at points with at least two successors:

12.$]5.@i Oy

This formula first names the point of evaluatigrit then declares thathas a successor which
it namesj, and then (with the help of @) it jumps backitto assert that also has a successor
distinct fromj.

But this increased expressivity comes at a price: by introdu¢img have sailed over the
border into undecidability. As we remarked earlier, the ability to create grid-like models is a
useful warning sign of undecidability, and the smooth interaction betyasd @ makes it easy
to create the unit squares required to build grids:

1. O(—iA 15.0(=i A —gA [k.QiO(—i A —j A=A 1.OK))).

If you work through this formula you will see that it demands the existence of four distinct points,
which it callsi, j, k, andl, such thatRij, Rjk, Ril and Rlk. Note the characteristic use of the
embedded; to jump us back to the original point of evaluatifirthis enables us to construct a
second path fromto & that goes via point. Of course, moving from this observation to a proof
that it is possible to code the tiling problem takes more work, but it can be done, and the upshot
is: adding] has moved us up to an undecidable fragment of first-order logic.
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But which fragment? The answer has two natural formulations. The first has the now-familiar
form of a Characterisation Theorem: it turns out that adding downarrow has moved us up to
precisely that fragment of first-order logic whichimvariant under generated submodelBhe
second answer has a more syntactic flavour: we have moved uphbouhded fragmentf first-
order logic. The bounded fragment consist of all first-order formulas built up from atomic formu-
las using the booleans and bounded quantifications of thedgt@Rry A ¢) andvy(RTy — »),
wherer is a term that does not contain The bounded fragment arises naturally in set theory
(see Levy [89]) and arithmetic (see Buss [20]). In the mid-1960s, Feferman and Kreisel [41, 40]
characterised the bounded fragment as the fragment of first-order logic invariant under generated
submodels. It is intriguing that hybrid logic should have arrived at the same fragment by such a
different route.

For full formulation and proofs of these results, see Areces, Blackburn and Marx [6]. For
a detailed overview of hybrid logic, covering the results mentioned and much else besides, see
Chapter 14 of this handbook.

6.3 Temporal logic with Until and Since operators

We turn now to another historically early enrichment: the addition of the bibiaftyntil) and S

(Since) operators. These were introduced in the late 1960s by Hans Kamp [76], who added them
to Arthur Prior's basic ' and P based) tense logic, and proved an elegant resulind S are
expressively complete with respect to Dedekind complete strict total orders (we discuss Kamp's
result below). But, beautiful though this is, it is not what led to the present popularity of these
operators. Rather, around 1980, Gabbay, Pnueli, Shelah and Stavi [53] observed that Until offers
precisely what is required to state what computer scientistggoaltantee propertiesand this

led to its widespread adoption for reasoning about programs. Given the number of researchers
currently active in temporal logic for program verification, Until may well be the best known
and most widely used modal operator of all: it plays a key role in LTL (Linear Time Temporal
Logic), CTL (Computational Tree Logic), and CTl(a highly expressive system that contains
both LTL and CTL as sublogics). For an introduction to these logics, see Clarke, Grumberg and
Peled [25].

Now, we briefly met the Until operator in Section 4 when we discussed model checking.
There we defined it in terms @@ and R*, the transitive and reflexive transitive closures of the
underlying relationR used by the>. Here we shall define Until and Since in their most general
form:

M w = Ul(p,v) iff thereis av such thatRwv and9, v | ¢,

and for allu such thatRwu and Ruv we havedlt, u = 1.
M, w = S(p,¢) iff thereis av such thatRvw and9, v = ¢,

and for allu such thatRvu and Ruw we havedlt, u = 1.

Putting this in words, Until asserts that theres@mepoint in the future where holds, and
that atall points between the point of evaluation and this futyrevitnessing pointy) holds.
Since functions in the same way, but towards the past. Notéthmttern of quantification in
the satisfaction definitions. These operators are neither diamonds nor boxes; they are something
new and (as we shall see) more powerful.

What can we say with them? For a start, they have all the power of ordinary diamonds:
U(p, T) has the same meaning €s. But now we can say more: these operators are tailor-
made for stating guarantee properties, requirements of the fBomé event will happen, and
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until that event takes place, a certain condition will hibldror if we represent the event by
and the condition by, thenU (¢, ¢) clearly captures what is required.

But how can we be sure that we can'’t state guarantee requirements in the basic modal lan-
guage? A simple bisimulation argument demonstrates this. Consider the two models shown in
Figure 19. The two models are clearly bisimilar (simply link both points in the right-hand model

Wy

o

Wo
Figure 19. Until is not definable in basic modal logic.

to the single point in the left-hand model; all propositional symbols are false at all points in both
models, though this is irrelevant to the following argument). This means that the two models
agree on the truth of all basic modal formulas at all points. But the models disagree on the value
of U(T,L). This formula is true in the model on the left, but false at both points in the model of
the right. We conclude that no basic modal formula can capture the effect of Until.

But this is a little too easy. Until is typically used for temporal reasoning tasks, and the two
models just shown have little to recommend them as flows of time. But it turns out that Until
cannot be defined even if we work with models with more structure. For a start, even if we
restrict our attention to transitive models, Until is not basic modal definable. For consider the
two models shown in Figure 20; we are interested in the transitive closure of the relation indicated
by the arrows. These models are bisimilar (linkandw; with w’, link tq and¢; with ¢/, and so
on). So suppose that there is some formula in the basic modal language that captures the effect
of U(p,q). Any such formula would be true in the left-hand model at poingsandw;. For
consider what happens at (the argument fokv; is analogous). There is a point to its future
(namelywv;) that make9 true and at all points lying in between (and there is only one, namely
u) we have that is satisfied. However any such formula wouldfaksein the right-hand model
atw’, for here there aravo points betweem’ andv’ (namelyu’ andt’) andt’ does not satisfy.

As w' is bisimilar tow, andwy, we conclude that no basic modal formula can capture the effect
of Until. And this result can be strengthened. Even if we restrict ourselves to linear models,
the basic modal language can’t define Until, and it can’t do so on the real numbers either (see
Proposition 7.10 in Blackburn, de Rijke and Venema [13]).

So addingS andU to the basic modal language yields new expressivity — but how much?
We shall state Kamp’s Theorem, which shows that on certain classes of structures (a class that
includes the real numbers) these operators capture the entire one free variable fragment of the
first-order correspondence language. Let’s discuss this result (which was one earliest, and is still
one of the most striking purely semantic results in modal logic) in a little more detail.

First, note that Until and Since correspond to fragments of the familiar first-order correspon-
dence language that we have been working with throughout the chapter. After all, we can trans-
late them as follows:

ST (U(p,9¥)) = Fz(RxzAST.(p) AVy(Rzy A Ryz — ST, (¢)))
ST:(S(p,¥)) = 3Fz(Rzax AST.(p) AVy (Rzy A Ryxz — ST,(v))).
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Figure 20. Even on transitive frames, Until is not definable in basic modal logic.

(Incidentally, observe that we need three variables to specify this translation, whereas we only
needed two for the basic modal language. Now, the three variable fragment of first-order logic
is known to be undecidable, thus the translation doesn't give us an easy decidability result for
the enriched modal language, though its satisfiability problem over arbitrary models is in fact
decidable.)

So what does Kamp’s Theorem say? First some preliminary definitionsML a class
of models. We say that a modal languagexpressively complete ovbt, if every formula (in
one free variable) from the first-order correspondence language is equivalent to a formula in the
modal language (when we restrict attention to models fkmWhich class of models is Kamp'’s
Theorem about? Atrict total orderis any frame (with one binary relatioR) that is transitive,
irreflexive, and linear (that isyzy(Rxy V * = y V Ryz)). A strict total order isDedekind
completeif every subset with an upper bound has a least upper bound. Standard examples of
Dedekind complete strict total order are the real numfiRrs<) and the natural numbe(¥, <)
under their usual orderings. And now we have:

THEOREM 40 (Kamp’s Theorem). The basic modal language enriched withand S is ex-
pressively complete with respect to models based on Dedekind complete strict total orders.

Proof. The original proof is in Kamp’s thesis [76]. Elegant modern proofs, and proofs of stronger
expressive completeness results, can be found in Gabbay, Hodkinson and Reynolds [52]. See also
Chapter 11 of this handbook. -

Much more could be said about the Until and Since operators, but we will confine ourselves to
the following remark. Because of thely pattern of quantification, for some time it was unclear
how best to define a suitable notion of bisimulation. However Kurtonina and de Rijke [87] and
Sturm [120] have given definitions which enable characterisation theorems to be proved.

6.4 Conditional logic

Although formulas of the fornp — 1 are often glossed as “if then”, the truth conditions

that classical logic gives to thes symbol (and in particular, the fact that— ¢ is true whenp

is false) means that> does not mirror the more interesting meanings that conditionals can have
in natural language. This has inspired numerous attempt to introduce conditional connectives
(say,>) that better mimic the logic(s) of natural language conditionals. Indeed, such aspirations
have given birth to an entire branch of logic, namely Relevance Logic, which nowadays is a
well-established branch of the study of substructural logics (see Restall [108]).
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But there is a modal approach to conditionals too. Its motivation comes from the following
intuition: a conditionakp > ¢ can (often) be read as anvitation to assume the antecedent
(perhaps making some adjustments to accommodate its truth) and check if the consequent is true.
A characteristic inferential feature of this reading is the failurmohotonicity in the antecedent
“If | catch the 6.22 train at Amsterdam Central)( | will be home on time4))” might be true on
the most natural reading of the conditional, but adding an unusual further condition may make it
false, as the sentence “If | catch the 6.22 train at Amsterdam Cegplrarid the dikes breald),
| will be home on time {))” demonstrates.

Models for modal-style conditional reasoning are trigl#gs= (W, C, V). HereW is a non-
empty set (whose elements are usually called world$3,a valuation, and’ is a ternary relation
of relative similarity, or (as it is sometimes put in the literature) a relation of relative ‘compar-
ison’ or ‘preference’ between worlds. It is useful to writevuv asC\,,uv and to read this as
saying that “worldu has more in common with world) than worldv does”. It is standard
to demand that eact,, satisfiesvuvz(Cpuv A Cyvz — Cypuz), w-centred transitivity, and
vuC'\yuu, w-centred reflexivity. Moreover, some authors, most famously David Lewis, also de-
mandw-centred comparability, that isuv(C,uvV Cyvu). A good way to visualise the relation
C,uv is to think ofu andv as two concentric circles around If © andv are distinct, them is
a concentric circleloserto w thanw is.

The simplest truth condition for conditionals is the following, which come from David Lewis’s
groundbreaking book “Counterfactuals” [90]. It fits in well with our intuitions (at least on finite
models):

M, w = ¢ > iff all minimal worlds in thew-centred ordering,, uv at whichy is true
are also worlds where holds

This satisfaction clause can be phrased more succinctly as follows: all mipkwaklds are
-worlds.
Note that thep-minimal worlds aroundw are the only ones we consider. As the minimal
worlds satisfying the stronger conditignA 6 need not be the ones satisfyipgin this way we
get a semantic distinction which accounts for the failure of monotonicity in the antecedent.
But what abouinfinite models? Then there need not be any minimal worlds satisfying the
antecedent (we might have a chaingfatisfying concentric circles coming ever closentp
Here’s a way of handling this: switch to the following more complex truth condition (to keep
thing readable, we shall write ugdv) as shorthand fait, v = ¢, and similarly fory):

MuwlEe >y iff Yu(p(u) = Fo(Cuou & p(v) & V2((Cypvz & o(v)) = 1(2)).

This says that the conditional > ¢ holds if, wheneverp holds at some circle, then there

is some smaller circle wherey holds such that all circles within v satisfyp. This is rather
awkward to process in first-order logic, but it can be clearly expressed in modal logic if we make
use of a unary modalit{c) (which looks inwards for a circle closer to the centre) together with
the universal modalityl. For then we can simply say:

> =aey Alp = ()@ Ald(p = 1))

This more complex truth-condition validates a minimal logic which includes such principles
as upward monotonicity in the consequept> 1 impliesy > (¢ Vv 6). Further properties of
the similarity ordering enforce special axioms via standard frame correspondences. Assuming
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just reflexivity and transitivity yields the minimal conditional logic originally axiomatised by
Burgess [19] and Veltman [142], while assuming also comparability of the ordering gives rise to
the logics obtained by Davis Lewis.

What about complexity? A number of interesting results are known:

THEOREM 41. The satisfiability problem for the minimal conditional logic (that is, where
Cuv is transitive and reflexive) is PSPACE-complete when formulas with arbitrary nestings
of conditionals are allowed, and NP-complete for formulas with bounded nesting of condition-
als.

Proof. See Friedman and Halpern [50]. These authors also prove that if uniformity is assumed
(that is, if all worlds agree on what worlds are possible) the complexity rises to EXPTIME-
complete, even for formulas with bounded nesting. Moreover, they show that if absoluteness
is assumed (that is, all worlds agree on all conditional statements) the decision problem is NP-
complete for formulas with arbitrary nesting. -

In general, conditional logic has not been studied semantically in the same style as most
modal languages, though there is no reason why it cannot be. For example, bisimulations could
be defined for> is much the same spirit as they are defined for temporal logics with Until and
Since. Likewise, issues of frame definability beyond the minimal setting can be explored; for
example, van Benthem'’s [136] survey of correspondence theory notes correspondences between
conditional axioms and triangle inequalities concerning concrete geometrical relations of relative
nearness in space. Many recent technical developments in conditional logic, however, have to
do with its connection witlbelief revision theorysee Grdenfors and Rott [55]). In that setting,

a conditionaly > 1 means “if | revise my current beliefs with the information thatthenq)
will be among my new beliefs”; see, for example, Ryan and Schobbens [110]. For more on these
topics, see Chapters 20 and 21 of this handbook.

6.5 The guarded fragment

The richer modal languages so far examined have clearly been modal in a syntactic sense; all
use the typical “apply operator to formula” syntax. The guarded fragment, however, arises as an
attempt to isolate fragments of first-order logic that can plausibly be called modal. So the modal
languages we shall consider here are syntactically first-order.

The clue leading to the guarded fragment is the standard translation of the modalities. This
treats modalities as macros embodytestrictedforms of first-order quantification, in particular,
quantification restricted to successor states:

ST.(OCp) = Jy(Ray AST,(p))
ST.(Op) = Vy(Rxy — ST,(p)).

As we saw earlier, it is this restricted form of quantification that lets bisimulation emerge as the
key model-theoretic notion. And bisimulation, via the tree model property, leads to decidability.
Thus at least one pleasant property of modal logic can plausibly be traced back to its use of
a restricted form of quantification. So it is natural to ask whether other first-order fragments
defined by restricted quantification have such properties. This line of enquiry leads to the guarded
fragment and its relatives.

The first step takes us to the guarded fragment, which was introduced bgk&ndian Ben-
them, and meti [5]. Guarded formulag are built up as follows:

p = QT| e leAt|e = | IGED AET) | VICET) = ¢(@.1).
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Herez andy are finite tuples of variables) is a predicate symbol (of appropriate arity for
the tuplez), andG, the guard, is a predicate symbol too. The key point to observe is that the
free variables ofp appear in the guard. The set of all guarded first-order formulas is called the
guarded fragment.

THEOREM 42. The guarded fragment is decidable. Its satisfiability problem is 2EXPTIME-
complete, and EXPTIME-complete if we have a fixed upper bound on the arity of predicates.
Moreover, the guarded fragment has the finite model property.

Proof. See Gadel [62] for the complexity results and a direct proof of the finite model property.
An earlier (algebraic) proof of the finite model property can be found in Akalr Hodkinson,
and Nemeti [4]. 4

The guarded fragment is a natural generalisation of the first-order formulas obtainable under
the standard translation, but does it go far enough? For example, adding Until to a basic modal
language yields a decidable logic, but the standard translatibifafy), namely

Jy (Rxy A Py AVz ((Rzz A Rzy) — Qz)),

does not belong to the guarded fragment, and it can be shown that it is not equivalent to a formula
in the guarded fragment either. This suggests that it may be possible to pin down richer restricted-
guantification first-order fragments that retain decidability, and several closely related extensions
of the guarded fragment, such as the loosely guarded fragment (see van Benthem [134]) and the
packed fragment (see Marx [93]) have been proposed which do precisely this. Let’s take a quick
look at the packed fragment.

The packed fragment allows us to usEMposite guards instead of merely atomic guards
guards are now conjunctions of the following kinds of formulas= z; or R(z;,,...,;,) or
Jz;, ... 3x;, R(xyy, -+, x;,) OFVj, ... Va; R(z,,, - ,x;,). The crucial point, however, is
to state some restriction on the way we quantify variables to ensure that decidability is retained.
In the packed fragment we do this as follows. We say that a guasda packed guardf for
every pair of distinct free variables andzx; it contains, there is a conjunct inin which z; and
x; both occur free. Then packed formulas are built up as follows:

o = QT|-@|oAY|e—=vY]|3GyAe). | VH(y — v),

wherey is a packed guard is a packed formula, and (as with the guarded fragment) all variables
free inp are free iny. The set of all packed first-order formulas is called the packed fragment.
As an example, consider again the standard translatiéipfq), namely

Jy (Rxy A Py AVz ((Rzz A Rzy) — Q2)).

This is not packed as the guard of the subformidd(Rxz A Rzy) — @Qz)) has no conjunct
in which 2 andy occur together. But this is easy to fix. The following (logically equivalent)
formulais packed:

Jz (Rxy A Py AVz ((Rxz A Rzy A Rxy) — Qz)).

And indeed, the packed fragment turns out to be computationally well behaved:

THEOREM 43. The packed fragment is decidable. Its satisfiability problem is 2EXPTIME-
complete. Moreover, it has the finite model property.
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Proof. The complexity result follows from results in &tel [62]. The original proof of the finite
model property for the packed fragment (and the loosely guarded fragment) can be found in
Hodkinson [68]; a more elegant proof can be found in Hodkinson and Otto [69]. -

In short, we have isolated two decidable fragments of first-order logic which are expressive
enough to generalise many common modal languages. Moreover, these fragments have attractive
properties besides decidability. Basic modal logic resembles first-order logic in most of its meta-
properties, even ‘existential’ ones (such as Craig Interpolation, Beth definability, and the standard
model-theoretic preservation theorems) that do not follow straightforwardly from the fact that
it is a first-order fragment. The guarded fragment shares this good behaviour to some extent,
witness the Los-style preservation theorem for submodels given inekadvan Benthem, and
Németi [5]. But subsequent work has shown that the picture is somewhat mixed. There is indeed
a natural notion of guarded bisimulation (see Agidr, van Benthem, and@éxheti [5]) which
characterises the guarded fragment as fragment of first-order logic. Moreover, Beth definability
holds (see Hoogland, Marx and Otto [71]). However Craig interpolation fails in its strong form,
though it holds when we view guard predicates as part of the logical vocabulary (see Hoogland
and Marx [70]).

This is a good moment to take stock of some the first-order fragment we have encountered in
the course of this chapter, and their interrelationships. Figure 21 summarises the relationships

Bounded Fragment

ML+Until

ML

Figure 21. Some modally significant fragments of first-order logic.

between first-order logic, the more restricted (but undecidable) bounded fragment, and the still
more restricted (but decidable) guarded fragment. Also shown are the fragments of first-order
logic corresponding to the basic modal language, and the fragment corresponding to the basic
language enriched with Until. Here,land L3 indicate the two and three variable fragments
respectively; the basic language fits into the former, but the Until enriched language spills over
into the latter.
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6.6 Propositional Dynamic Logic

The richer modal languages so far discussed extend the first-order expressive power available for
talking about models: the universal modality adds quantificationdveii’, hybridisation gives

access to constants and equality, Until and Since and conditional logic add richer quantificational
patterns, and the guarded-fragment cheerfully replaces modal syntax with first-order syntax. But
the next two languages we shall discuss take us in a different direction: boseaddd-order
expressive power. Now, in Section 5 we saw that modal languages have second-order expressive
power (via the concept of validity) at the levelfshmes But in the languages we now consider,
second-order expressivity arises directly: it is hardwired into the satisfaction definitions, and
hence is available at the level wiodels In particular, Propositional Dynamic Logic (henceforth
PDL) offers us an (infinite collection of) transitive closure operators, and the medalculus

offers us a general mechanism for forming fixed-points. Significantly, both PDL and the pzodal
calculus were born in theoretical computer science. Finite structures are crucial to the theory and
practice of computation, and basic results of finite model theory (see Ebbinghaus and Flum [35])
show that first-order logic is badly behaved when interpreted over such structures. Nowadays
it is standard practice to extend first-order languages with second-order constructs (such as the
ability to take transitive closure or form fix-points) when working with finite models, and in the
languages we now consider, such ideas are put to work in modal logic.

Let'’s start by looking at the weaker of the two languages, namely PDL. The underlying idea
(to extend modal logic with a modality for every program) is due to Vaughan Pratt [102], and
the language now called PDL was first investigated by Fisher and Ladner [47, 48]. PDL contains
an infinite collection of diamonds. Each has the farm), wherer denotes a non-deterministic
program. The intended interpretation @f) is that “some terminating execution af from
the current state leads to a state with the informa{idn The dual assertionir|p states that
“every terminating execution of from the current state leads to a state with the information
©". Crucially, the inductive structure of programs is made explicit in PDL's syntax, as complex
programs are built out of basic programs using four program constructors. Suppose we have
fixed a set of basic programs b, ¢, and so on. We are allowed to define complex programs
over this base as follows:

Choice: if m; andm, are programs, then so i§ U 7. It non-deterministically
executes either; or ms.

Composition: if 71 andw, are programs, then sots ; 7. It first executesr; and
then executes,.

Iteration: If 7 is a program, then so is*. It executesr a finite (possibly zero)
number of times.

Test: if ¢ is a formula, theny? is a program. It tests whether holds, and if so,
continues; if not, it fails.

Hence PDL makes available the following (inductively defined) algebra of diamonds. First
we have diamondéa), (b), {c), and so on, for working with the basic programs. Therif)
and(m,) are diamonds angd is a formulas{m; Ums), (71 ;m2), (77) and(p?) are diamonds too.

Note the unusual syntax of the test constructor diamond: it makes a modality out of a formula.
This means that the sets of PDL formulas and modalities are defined by mutual induction.

How do we interpret PDL? Syntactically we’re simply dealing with a basic modal language in

which the modalities are indexed by a structured set. So a model for PDL will have the form we
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are used to, namely
(W,{R™ | wis a program}, V),

a suitably indexed collection of relations together with a valuation. Moreover, the usual satisfac-
tion definition is all that is required: diamonds existentially quantify over the relevant transitions,
and boxes universally quantify over them. Nonetheless, something more needs to be said. Given
the intended interpretation of PDL, most of these models are uninteresting. We want models
built over frames which do justice to the intended meaning of our program constructors. Which
models are these?

Nothing much needs to be said about the interpretation of the basic programs: any binary
relation can be regarded as a transition relation for a non-deterministic program (though if we
were interested imleterministicprograms, we would insist on working with frames in which
each basic program was interpreted by a partial function). Nor need much be said about the test
operator. Unusual though its syntax is, its intended interpretation in any @debkimply

R?" = {(w,v) | w=vandM,w k= ¢}.

But the three remaining constructors demand that we impose inductive structure on our frames.
Here’s what is required:

R7T1U71'2 — R7l'1 U R7T2’
R™i™ = RMoR™ (={(z,y) | 3z (R™ 2z A R™zy)}),
R™ = (R™)*, the reflexive transitive closure ™.

These restriction are the natural set-theoretic ways of capturing the “either-or” nature of non-
deterministic choices (fakR™Y2), the idea of executing two programs in a sequencel{foi™)
and the idea of iterating the execution of a program finitely many times{foy. Accordingly,
we make the following definition. Lefl be the smallest set of programs containing the basic
programs and the programs constructed over them using the constructorand*. Then a
regular frameoverIl is a frame(W, {R™ | = € II}) whereR“ is a binary relation for each basic
programa, and for all complex programs, R™ is the binary relation constructed inductively
using the above clauses. rAgular modelover IT is a model built over a regular frame (that
is, regular models are regular frames together with a valuation). When working with PDL over
the programs ifdl, we will be interested in regular models fOr, for these are the models that
capture the intended interpretation. All very simple and natural — but by insistingRthat
be interpreted by the reflexive transitive closuref3f, we have given PDL genuinesecond-
order expressive power. A straightforward application of the Compactness Theorem shows that
first-order logic cannot define the transitive closures of arbitrary binary relations, so with this
definition we've moved beyond the confines of first-order logic.

What can we say with PDL? At the level of models we can express some familiar constructs
as programs of PDL:

(p?;a)U (—p?;b) if pthen aelse b.
a; (—p?;a)*;p? repeat auntil p.
(p?;a)*; —p? while pdo a.

Note the crucial role played byin capturing the effect of the two loop constructors.
Moreover, the second-order expressivity built in at the level of models spills over into the level
of frames. Here’s a nice illustration. Via the concept of validity, PDL itself is strong enough to
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define the class of regular frames (something which cannot be done in a first-order language).
Now, it is not hard to give conditions that capture choice and composition. The formula

(m1 Uma)p < (m1)p V (m2)p

is valid on precisely those frames satisfyiRg'“™ = R™ U R™, and

(15 m2)p < (1) (m2)p

is valid on precisely those frames satisfyiRg!™ = R™ o R™.

But these are first-order conditions. What about iteration? We demanded that the tR&tion
used for the program* be the reflexive transitive closure of the relatiBfi used forr. This
constraint cannot be expressed in first-order logic; how can we impose it via PDL validity?

As follows. First we demand that

(T*)p = @V (m;m)p

be valid. This says that a state satisfyingan be reached by executinga finite number of
times if and only if wep is satisfied in the current state, or we can exeeubace and then find
a state satisfying after finitely many more iterations af. Second, we demand that

[ e = [mlep) = (0 = [77]p)

be valid too. This is calle@®egerberg’s axiom Work through what it says: as you will see,
in essence it is an induction schema. A frame validates all instances of the four schemas just
introduced if and only if it is a regular frame.

Summing up, at both the level of models and frames, PDL has a great deal of expressive
power. Hence the following result is all the more surprising:

THEOREM 44. PDL has the finite model property and is decidable. Its satisfiability problem is
EXPTIME-complete.

Proof. The finite model property, decidability, and EXPTIME-hardness results for PDL were
proved in Fisher and Ladner [47, 48]. The existence of an EXPTIME algorithm for PDL satisfi-
ability was proved in Pratt [103]. o

But we are only half-way through our story. With the mogatalculus we will climb even
higher in second-order expressivity hierarchy, and we will do so without leaving EXPTIME.

6.7 The modal:-calculus

The modalu-calculus is the basic modal language extended with a mechanism for forming least
(and greatest) fixed-points. It is highly expressive (as we shall see, it is stronger than PDL) and
computationally well behaved. Moreover it has a beautiful bisimulation-based characterisation.
All'in all, it is one of the most significant languages on the modal landscape. It was introduced
in its present form by Dexter Kozen [80].

The idea underlying the modatcalculus is to view modal formulas agt-theoretic opera-
tors, and to add mechanisms for specifying their fixed-points. Now, a set-theoretic operator on a
setlV is simply a functiont” : 2" — 2", But how can we view modal formulas as set-theoretic
operators? Consider a formulacontaining some propositional variable (g8y In any model,
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o will be satisfied at some set of points. If we systematically vary the set of points that the
valuation assigns tp, the set of points where is satisfied will typically vary too. So we can
view ¢ as inducing an operator over the points of some model, namely the operator that takes as
argument the subset &F that is assigned tp, and returns the set of points whesés satisfied
with respect to this assignment.

Let's make this precise. We will work in a language with a collection of diamagpads
so models have the for®t = (W, {R" }.emon, V). For any propositional symbal, V (p)
is the set of points iMt wherep is satisfied. Let's extend” to a function that returns, for
arbitrary formulasp, the set of points ift that satisfy, (we won't invent a new name for this
extended valuation, we'll simply call ). The required definition is a simple reformulation of
the satisfaction definition for the basic modal language:

V(p) = V(p) forall proposition symbolg
Vimyp) = WA\V(p)
Vieny) = Vip)nV(y)
V((r)p) = {w|forsomev € W, R™wv andv € V(p)}.

Furthermore, for any propositional symieland anyU C W we shall writeV,_; for the
(extended) valuation that differs from the (extended) valuakioif at all, only in that it assigns
U top. Thatis,Vj,_y(p) = U, and for anyg # p, Vj,—v)(q) = V(g). Then the operator
induced by a formulay (relative to a propositional variablg) is the function that maps any
U - W to Vv[pHU]((p)

Now to bring fixed-points into the picture. A subsétof W is a fixed-point of a set-theoretic
operatorF on W if F(X) = X. This is clearly a special property: which set-theoretic operators
have fixed-points, and how do we calculate them? The Knaster-Tarski Theorem (see Knaster [79]
and Tarski [122]) gives important answers. Firstly, this theorem tells us that fixed-points exist
when we work withmonotoneset-theoretic operators (an operafolis monotone ifX C Y
implies thatF'(X) C F(Y)). Secondly, this theorem tells us thafifis a monotone operator on
a setlV, thenF has a least fixed-pointF', which is equal to

(v cw|FU)CU},
and also a greatest fixed-poink’, which is equal to
Utvcw v cFu)}.

That is, bothuF' andvF are solutions to the equatidfii(X) = X, and furthermore, for any
other solutionZ, we have thapF' C Z C vF'. The least and greatest fixed-points given by the
Knaster-Tarski Theorem are the fixed-points the medehlculus works with.

But how can we specify these fixed-points using modal formulas? By enriching the syntax
with an operator that binds occurrences of propositional variables. That is, we shall write
expressions likgp., in which all free occurrence of the propositional varigbla  are bound
by 1. The intended interpretation pp.¢ is that it denotes the subsetidf that is the least fixed-
point of the set-theoretic operator inducedgbwith respect tg. Fine — but how do we know
that this fixed-point exists? If is arbitrary, we don’t. However if all free occurrencespdh ¢
occur positively (that is, if they all occur under the scope of an even number of negations) then
a simple inductive argument shows that the set-theoretic operator inducgdsbsnonotone,
and hence (by the Knaster-Tarski Theorem) has least (and greatest) fixed-points. Accordingly
we impose the syntactic restriction that gh@perator can only be used to bind a propositional
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variable when all free occurrences of the variable occur positively. With this restriction in mind
we define:

V(up.p) = (U S W | Vi (p) S U}

That is, the set assigned t@.¢ is the least fixed-point of the operator inducedy
What can we say with the modatcalculus? Consider the expression

up-(¢ V (m)p).

Read this as defining “the least property (subgeg)ich that eithep is in p or (m)p is in p".
What is this set? A little experiment will convince you that it must be

{w e W | M, w |= ¢ or there is a finiteR™ -sequence fronw to v such thatlt, v = ¢}.

(The reader should check that this set really is the one given to us by the Knaster-Tarski Theo-
rem.) Note that this is exactly the set of points that make the PDL forgatflap true.

How do we specify greatest fixed-points? With the help of:ittaperator. This is defined as
follows:

vp.p =det ~up-2p(=p/p),

wherep(—p/p) is the result of replacing occurrencespolby —p is ¢. This expression is well-
formed: if ¢ is a formula that we could legitimately apply theoperator to (that is, if all occur-
rences ofp occur under the scope of an even number of negations), then-so(isp/p). The
reader should check that this operator picks out the following set:

V(pp) = (JIUCSW |UC Vi (@)}

That is (in accordance with the Knaster-Tarski Theorem) it picks out the greatest fixed-point of
the operator induced by. As a further exercise, the reader should check that

vp.(¢ A [m]p)
denotes the following set:
{w e W | M, w = ¢ and at every reachable fromv by a finite R™-sequencet, v |= ¢}.

Note that this is exactly the set of pointsthat make the PDL formular*] true.
In view of these examples, it should not come as a surprise that PDL can be translated into the
modaly-calculus. Here are the key clauses:

(M Um)@)™ = (m)(p)™V (ma) ()™
((my; ma)p)™ = (m1)(ma) ()™
{m*)o)™ = pup.((p)™V ((r)p)™), wherep does not occur irp.

In fact the modalu-calculus is strictly more expressive than PDL. The simplest example of
a construct that PDL cannot model but that the mgdahklculus can is theepeatoperator.
The expressiomepeat(r) is true at a statev if and only if there is an infinite sequence Bf
transitions leading fromw. Proving that this is not expressible in PDL is tricky, but it can be
expressed in the modatcalculus: the formulap.(7)p does so. Moreover, the temporal logics
standardly used in computer science, such as LTL, CTL, and*Cddn also be embedded in the
modaly-calculus. For remarks and references on this topic, see Chapter 12 of this handbook.
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All'in all, the modalu-calculus is a highly expressive language. In spite of this, it is extremely
well behaved, both computationally and in other respects. For a start we have that:

THEOREM 45. The modal:-calculus has the finite model property and is decidable. Its satis-
fiability problem is EXPTIME-complete.

Proof. The original decidability proof was given in Kozen and Parikh [81]. The finite model
property was first established in Street and Emerson [119]. The complexity result is from Emer-
son and Jutla [36]. -

Furthermore, experience shows that the medahlculus is also well behaved when it comes to
model checking — indeed it is widely believed that its model checking task can be performed
in polynomial time. However, at the time of writing, this conjecture has resisted all attempts to
prove it.

Moreover, the modal-calculus has a elegant semantic characterisation. Suppose we add the
following clause to the standard translation for basic modal logic:

STz (up-¢) = VP(Vy((STe(v) — Py) — Py)).

This clearly captures the intended semanticg.0But note that by adding this clause we are
viewing the standard translation as taking us to monadic second-order logic, for here we bind the
unary predicate symbd?. This language is already familiar to us: it's he frame correspondence
language introduced from Section 5, but here we're using this to express the correspondence at
the level ofmodels Thus (even at the level of models) the mogatalculus is a fragment of
monadic second-order logic. But which fragment? This one:

THEOREM 46 (Modalu-Calculus Characterisation Theorenffhe modalu-calculus is the
bisimulation invariant fragment of monadic second-order logic.

Proof. See Janin and Walukiewicz [73]. -

For more on the modal-calculus, see Chapter 12 of this handbook. As well as giving a
detailed technical overview, the chapter also gives an informal introduction to thinking in terms
of fixed-points, which is often a stumbling block when the madaialculus is encountered for
the first time.

6.8 Combined logics

We now turn to what is (at first glance) one of the simplest methods of obtaining a richer modal
language: combine two pre-existing ones. But for all its apparent simplicity, this method of
enrichment swiftly leads to difficult territory.

Many applications lead naturally to the idea of combined logics. A good example is planning.
Planning involves a collection of agents who must reason about what they are going to do given
that they know the effects of actions, and where getting more information may be important for
solving the problem at hand. Hence Robert Moore [98] proposed a combined language for this
task. His language offered both epistemic and action modalities, making it possible to say things
like

K;[a]e “agenti knows that doing: has the effecp”

and
[a]K;¢ “doing a makes agentknow thaty”.
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Actually, Moore also considered combinations of PDL with epistemic operators, as plans are
usually complex actions with program structure.

The fun starts when we ask how the two logics live together. For example, should they sim-
ply live side by side, the simple fusion of the two component logics? Or are there interactions
between them? Obviously this depends on what we are modeling. For example, Bhjaild
imply [a] K;©? In general, no. After all, | may know that after drinking | am boring, but unfortu-
nately after drinking | no longer know that | am boring (that is, drinking is not an epistemically
transparent action). Nor need the converse implication hold for actions that deliver genuinely
new information. After consulting my account manager, | know | am broke, but | do not know
now that after the consultation | am broke.

If our application does not require the modeling of such interactions, then we are dealing
with the simplest possible combination of two decidable modal logics, and the result is again
decidable. But for some applications we might want to enforce these interactions,, betthe
accessibility relation for action, and let~; be the epistemic relation for agentThe following
frame correspondences tell us what these interactions give rise to:

S E Kilalp — [a]Kip  iff Vayz((Razy Ay ~i 2) — Ju(z ~; u A Rquz))
§ E la]Kip — Ki[alp  iff Vayz((z ~i y A Rayz) — Ju(Rezu Au~; z)).

The first principle says that new uncertainty links between the results of an action are inherited
from existing ones; this is a version of the game-theoretic principfgedect recall The other
direction is callecho learning These are powerful interaction principles. Indeed, they impose a
grid-like interaction between the relations interpreting the modalities, hence the possibility arises
of showing undecidability by encoding the tiling problem. A good source of information on this
topic is Halpern and Vardi [64]. Among other things they show that the combined modal epis-
temic logic of agents with perfect recall, though still decidable, is highly complex, and that if a
common knowledge operator (that is, using PDL notation, a box of theffermu - - - ~,,)*]) is
added, the problem becomes undecidable. This is a natural example of the bad computational be-
haviour that combinations of relatively simple decidable modal logics can give rise to. Moreover
the air of mystery (“How can a description of well behaved agents get so complex?”) quickly
gets dispelled once we realise that the behaviour of special agents may have a rich mathematical
structure that makes their logic tough.

In recent years there has been intensive theoretical work on combinations of modal logic.
The goal has been to provide gendrahsfer results given two (or more) modal logics, and a
method of combining them, when do properties such as decidability, finite model property, and
finite axiomatisability transfer from the component logics to the combined logic? The simplest
way of combining two modal logics is to take their fusion. Given two modal logjicandL- (in
languages with disjoint sets of modal operators) then their fusioR L is the smallest logid.
in their joint language that contains them both. Fusions of modal logic have been investigated in
detail (key papers include Kracht and Wolter [82], Fine and Schurz [46], and Wolter [143]), and
have some pleasant transfer properties. For example, to axiomatise the fusiah, livgiaffices
to take the axioms for each of the components (that is, no interaction axioms involving modalities
from both language are required). Moreover, both the finite model property and decidability
transfer from the component logics to the fusion.

But this good behaviour reflects the fact that fusion is a combination method designed to
minimise the interaction between the component modalities. What of combination methods
which allow strong interaction between the modalities? The best studied combination tech-
nique here is the formation gfroductsof modal logics. Given two frame§; = (W1, R;)
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andg, = (Ws, Ry), their productf; x §- is the frame(W; x Wy, Ry, R,). HereRy, is the
binary relation ori¥; x W5 defined by(uy, v1) Ry (usg, vo) iff w3 Rius andv; = vy; andR, is
the relation defined byus,v1) R, (usz, ve) iff v1Revs andu; = us. The idea of taking prod-
ucts of modal logics is an old one (dating back to at least Segerberg [114]) and is a widely used
combination method in many applications of modal logic. But the product construction creates
frames which allow for very strong interactions between the modalities, and there are far fewer
transfer results for this method of combination; indeed, there are many negative results showing
failure of transfer of decidability.

Work on combination of logics, from both applied and theoretical perspectives, is one of
the liveliest areas of research in contemporary modal logic. For a detailed survey of fusions,
products, and methods of combinations between these extremes, see Chapter 15 of this handbook.

6.9 First-order modal logic

We turn now to what is arguably one of the least well behaved modal languages ever proposed:
first-order modal logic. However, in one of those twists that make intellectual history so fasci-
nating, first-order modal logic has come to be accepted (at least in philosophical quarters) as the
most important modal logic of all. For many philosophers, modal legficst-order modal logic.

This is not to say that first-order modal logic is philosophically uncontroversial. Indeed, as is
discussed in Chapter 21 of this handbook, one of the liveliest debates in 20th century analytic
philosophy was ignited when Quine [106] questioned the coherence of the enterprise. But two
advances lead to its acceptance. The first was the development of the relational semantics of
first-order modal logic (Kripke [83, 85] are key papers here) and the second was the publication
of “Naming and Necessity” (Kripke [86]) which presented what is probably the most widely
accepted philosophical interpretation of the technical machinery. While these developments did
not dispel all the controversy, nowadays first-order modal logic together with (some form of)
relational semantics, is generally regarded as a well understood (perhaps even boringly familiar)
tool of philosophical analysis.

Viewed from a mathematical perspective, however, things look rather different. Had first-
order modal logic never existed, a logician who proposed its (now standard) syntax and relational
semantics might have been regarded as audacious, perhaps downright careless. Why? Because,
in essence, first-order modal logic is a combined logic. As we have just seen, combining two
modal logics while retaining interesting properties is no easy matter. So it should not come as
too much of a surprise that combining propositional modal logic with first-order logic is unlikely
to be plain sailing. In what follows we shall sketch the standard syntax and semantics, and
mention some of its problematic features.

First the syntax (we omit some of the clauses for the booleans):

o u= Play,...,z) |z=y|~p|p—=¢]|Op|Op|3zp | VIp.

HereP is ann-place predicate symbol and theare individual variables. So (given the clauses

for the quantifiers and booleans) it is clear that we have a full first-order language at our disposal,
and hence (because of the presence of the modalities) we can now search for first-order informa-
tion at accessible states in the familiar way. But we can do more. The clauses for the quantifiers
hide a subtlety: if a formula contains free first-order variables within the scope of a modality,
then formulas of the fornvze and3zp bind variables within the scope of the modality. This
possibility is what lead to Quine’s philosophical objections (“no binding into intensional con-
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texts”). And from a technical perspective it means we are combining two very different styles of
logic in a way that allows a strong form of interaction.

The standard semantics for first-order modal logic comes in a number of variant forms. One
basic choice concerns the domain of quantification: should the quantifiers range over some fixed
domain of quantification (theonstant domairsemantics), or should each point be associated
with its own domain (the varying domain semantics)? Here we shall present the varying domain
semantics; for a discussion of the constant domain approach, and of equivalences between the
constant domain, varying domain, and other approaches, see Chapter 9 of this handbook, or
Fitting and Mendelsohn [49].

DEFINITION 47. A varying domain model is a tupl&V, R, D, {8 twew, { Vi twew ). Here
W is a non-empty setR is a binary relation o#/; D (the domain of quantification) is a non-
empty set; for alw € W, 6,, C D; and for allw € W, V,, is a function that assigns to each
n-place predicate symbol a subset/of.

That is, we have the familiar modal machinery from the propositional case (not@khat)
is just a frame, and th&,, are essentially our familiar valuations upgraded to interpret first-order
n-place predicate symboR rather than propositional symbgi¥ augmented by a specification
(the §,,) of the individuals the quantifiers at each statgange over. We interpret first-order
modal logic by taking such a model, together with an assignment of values to variables (that
is, a functiong that maps the individual variables to elements/®df and using the following
satisfaction definition:

M,g,wkE Play,...,x,) iff (g(x1),...9(zn)) € Vu(P),

MygwEz=y iff g(z)=gy),
M, g,w = - iff notM, g,w k= g,

M gwE=p—y iff M gwpEe or Mg,wl=1p,
M, g,w=p  iff  for somewv € W such thatRwv we havedlt, g, v = ¢,
M, g,w=DOp iff forall v € W such thatRwv we haved, g, v = ¢,
M,g,w=3Jp iff forsomeg’ ~, g whereg'(z) € 6, we havell, ¢', v = ¢,
M, g,w=Ve iff forall ¢ ~, g suchthay'(z) € §,, we havedlt, ¢, v | .

(Hereg’' ~, g means that the assignmentandg’ are identical save possibly in the value they
assign to the variable.)

This language is capable of expressing some important distinctions. Consider, for example,
the formulasvzOyp andOVze. The first asserts, of each existing entity, that it has the property
 at all accessible states. The second asserts that, at each accessible state, each entity that exists
at that particular state has propegty Should either of these formulas imply the other? That is,
should we accept as valid either of the following two principles?

VaOp — OVae Barcan formula
OVzy — VaOp Converse Barcan formula

Instead of trying to answer such tricky philosophical questions (which bear atettietdde re
distinction, discussed in Chapter 9 of this handbook) let us consider what they say in the light of
the relational interpretation just given. It is not difficult to see that the Barcan formula is valid in
a varying domain model iff that model hdecreasing domainshat is, if for allw,v € W, Rwv
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implies§, C §,,. And the Converse Barcan formula is valid on precidalyreasing domain
models, that is, models with the property tiiavv impliesd,, C J,. So to insist on the validity
of both principles is to force an even stronger interaction between the quantifiers and modalities:
it takes us to a locally constant domain semantics in wiieh impliesé,, = ¢,,. Thisis a good
example of the clarity that relational semantics can bring to difficult conceptual issues, and shows
why first-order modal logic can be useful in philosophical logic and natural language semantics.

So what'’s the problem? Simply this: for all its analytical utility, first-order modal logic under
its standard semantics is not well behaved mathematically. Early signs of trouble appeared in
Fine [45], which showed that interpolation and the Beth property fail for first-o&®aunder
the varying domain semantics, and for any first-order modal logic betie@nd S5 under the
constant domain semantics. & is both philosophically central (it is widely considered to
embody the logic of “necessarily” and “possibly”) and semantically straightforward (it is the
logic of frames in whichR is an equivalence relation) these are strong negative results indeed.
Worse was to come. It turns out that it is possible to take a propositional modal logic that is
complete with respect to some class of frames, axiomatically extend it in the manner naturally
suggested by the standard semantics, and yet to wind up with an incomplete first-order modal
logic (see Ghilardi [56], Shehtman and Skvortsov [117], Corsi and Ghilardi [26], Cresswell [27]).

Now, the issue here is not so much the incompleteness in itself (as we have already discussed,
even in the propositional modal logic, frame incompleteness results are the norm) rather it is the
lossof completeness in the transition from the propositional case to the first-order case that is
worrying. To use the terminology introduced when we discussed combinations of logics: the
standard relational semantics for first-order logic is a method of combination for which transfer
of completeness fails.

Such results have led to renewed technical interest in first-order modal logic. The semantics
of first-order modal logic has come under intense scrutiny, and a number of alternative seman-
tics have been proposed which enable completeness results to be transferred. Some of this work
has been model-theoretic (see, in particular, van Benthem'’s [131] use of functional frames) but
most of it has been highly abstract, employing the language of category theory; for a detailed
account of such work, see Chapter 9 of this handbook. More recently, the hybrid logic com-
munity has pointed out that upgrading the underlying propositional modal language to a hybrid
language is another way to repair the situation: interpolation is regained (see Areces, Blackburn
and Marx [7]), indeed, regained constructively (see Blackburn and Marx [14]) and general pos-
itive results on transfer of completeness can be proved (see Blackburn and Marx [15]). All in
all, first-order modal logic is one of the most intriguing areas of modal logic: the most venerable
system of all poses some of the most interesting question about what it is to be modal.

6.10 General perspectives

Moving to richer languages better fitted for particular applications is a standard feature of current
research. Itis true that in some quarters sticking to the poorest modal base language of the found-
ing fathers (despite its evident handicaps in expressive power and mathematical convenience) is
still something of a religion. But the idea of designing extensions is not some new-fangled no-
tion; its roots stretch back to the work of von Wright [144] and Prior [104, 105], and the idea was
central to the work of the Sofia School (see, for example, Passy and Tinchev [101] for insightful
comments on what modal logic is and why one might want to enrich it). Still, pointing to a
noble heritage is not enough. We need to address a tricky question: what makes these languages
modaPl Being precise here is difficult. As we have seen, there is a wide range of extensions.
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Moreover, each application imposes its own concerns and peculiarities. Nevertheless, there is a
guiding idea that lies behind most examples of this form of language design: obtaining a rea-
sonable balance between expressive power and computational complexity. So the question we
should focus on is: what makes such natural balances arise?

As we have seen, many richer modal languages are fragments of the full language of first-
order logic over some appropriate similarity type of relations and properties. We can see this
by translation, just as we did with the basic modal language (we saw that the complex truth
conditions for the Until and Since are definable by first-order formulas, and the same is true for
the conditional connective, the universal modality, and the apparatus of hybrid logic). Now, there
have been various attempts to find general patterns explaining which parts of first-order logic are
involved in modal languages. Gabbay [51] observed that modal languages tend to translate into
so-calledfinite variable fragmentsf first-order logics, that is, fragments using only some finite
number of variables, fixed or bound. For example, we have seen that the basic modal language
can make do with only two variables, and temporal logic with Until and Since, and conditional
logic, only require three. Finite variable fragments have some pleasant computational behaviour;
for example, their model checking complexity is in PTIME (see Vardi [140]) as opposed to
PSPACE for the full first-order language. On the other hand, as we have already mentioned,
satisfiability is already undecidable for first-order fragments with three variables, so the real
reason for the low complexity of modal languages lies elsewhere. A different type of analysis
for the latter phenomenon was given in the paper “Why is modal logic so robustly decidable?”
(Vardi [141]). This emphasises the semantic adequacy of the tree-like models obtainable via
bisimulation unraveling of arbitrary graph models. This type of explanation is important as it
transcends first-order logic; on the other hand it does not provide much in the way of concrete
syntactic insight. For the latter, the current best explanation is the one provided by the guarded
fragment and its relatives (which are, arguably, the strongest known modal languages).

As we saw, guarded fragments locate the essence of modal logic nedtrection on the
guantification performed by the modalities. One attractive property of this analysis is its logical
resilience: it turns out that it extends beyond the setting of first-order enrichments to second-
order enrichment too, something that was not forseen when the guarded fragment was first iso-
lated. A striking example is the result in &tel and Walukiewicz [63] that the extension of the
guarded fragment with the fixed-point operatarandr remains decidable. By way of contrast,
validity for full first-order logic extended with these operators in non-axiomatisable, indeed, non-
arithmetical. This observation shows that the modal philosophy embodied in the idea of guarded
fragments is not restricted to first-order extensions: often modal fragments can bear the weight
of additional higher-order apparatus (such as fixed-point operators) which would send the full
first-order correspondence languages into a tailspin complexity wise. Our discussion of PDL and
the modalu-calculus has shown that this is the case for the basic modal languageel@nd
Walukiewicz's result for the guarded fragment shows that this type of behaviour persists higher
up: guarded quantification can support higher-order constructions too.

Perhaps guarding can be a fruitful strategy in even more exotic modal settings? One setting
worth exploring ignfinitary modal logic. This logic (which was used extensively in Barwise and
Moss [10] and Baltag [8] for investigating non-well founded set theory; see Chapter 16 of this
handbook) provides a perfect match with bisimulation: two pointed models are bisimilar if and
only if they satisfy the same formulas in a modal language that allows arbitrary infinite conjunc-
tions and disjunctions. Moreover a modal characterisation theorem holds. Now, decidability is a
non-issue in this setting, but what about existential semantic properties such as interpolation and
Beth Definability? It is known that interpolation holds for infinitary modal logic (see Barwise
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and van Benthem [11]), but can such results be lifted to infinitary guarded fragments? Another
setting worth exploring in this way isecond-order propositional modal logim which we can
quantify over proposition symbols (see Fine [42] for some early results, ten Cate [123] for a
more recent discussion, and Chapter 10 of this handbook for a brief overview). The equation
“modality = guarding” should be simultaneously regarded as a hypothesis to be tested in richer
settings, and as a useful heuristic for isolating further logics worth calling modal.

Not that we should put all our eggs in one basket. Perhaps the notion of modality is too
diffuse for any single approach to exhaust, and in any case it is worth looking for alternatives.
Another approach is to apply ideas from abstract model theory (see Barwise and Feferman [9]).
This was first done in de Rijke [30], who proved a modal analog of Lids®s [91] celebrated
characterisation of first-order logic. The original form of Lindsirs theorem says that an ab-
stract logicC extending first-order logic coincides with first-order logic iff it has the compactness
and Lowenheim-Skolem properties. Another way of stating the theorem is that an abstract logic
L extending first-order logic coincides with first-order logic iff it has the compactness and Karp
properties. (The Karp property is that all formulas are invariant for potential isomorphism, where
a potential isomorphism is a non-empty family of finite partial isomorphisms closed under the
usual back and forth extension properties; recall our discussion of partial isomorphisms in Sec-
tion 3.3). We shall discuss a (slightly reformulated) version of de Rijkes’s result and a more
recent characterisation due to van Benthem.

What is an abstract modal logic? Here’s the conception that underlies our reformulation of de
Rijke’s result. We give it in terms of pointed modeé®t, w), that is, a model together with a
point of evaluation.

DEFINITION 48 (Very abstract modal logics). Létbe a set of formulas, anée . its satisfac-
tion relation, that is, a relation between pointed models @&fdrmulas. A very abstract modal
logic is a pair(L, =) with the following properties:

1. Occurrence property. For eagtin £ there is an associated finite languad(.,,). The re-
lation (91, w) =, ¢ is a relation betweeri-formulasy and modelgMt, w) for languages
L containingL(\,). That s, ifp is in £, andt is an£-model, thenM, w) =, ¢ is
either true or false iC(\,) C £, and undefined otherwise.

2. Expansion property. The relatidft, w) =, ¢ depends only on the restriction oft
to L(\,). Thatis, if (M, w) =z ¢ and (N, w) is an expansion oft, w) to a larger
language, the(®1,v) =, .

A very abstract modal logi¢L, =) extends basic modal logic if for every basic modal for-
mula there exists an equivalefitformula (that is, if for each basic modal formuethere exists
an L-formulay such that for any modébit, w) we have(In, w) = ¢ iff (I, w) =, ).

De Rijke’s characterisation centres on the familiar bisimulation invariance property and the
finite depth property A very abstract modal logi€ has thefinite depth propertyff for any
L-formulap there is some natural numbkisuch that for all model9,

M, w = @ iff Mk, w = o,

wheret|k is the modeDit restricted to just those points that can be reached foamk or fewer
R-steps. De Rijke builds invariance for bisimulation into the notion of abstract modal logic, so
his statement of his Lindg€im-style result has the form: any abstract model logic with the finite
depth property that extends the basic modal language is basic modal language. Reformulating his
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result in terms of very abstract modal logic, thereby making the bisimulation invariance condition
explicit, results in:

THEOREM 49. SupposeC is a very abstract modal logic extending the basic modal language.
Then L coincides with the basic modal language 4ffhas the finite depth and invariance for
bisimulation properties.

Proof. See de Rijke [30, 31]. For a textbook-level exposition of the proof, see Theorem 7.60 of
Blackburn, de Rijke and Venema [13]. —

This is an informative result. Nonetheless, the finite depth property seems somewhat engi-
neered to capture the basic modal language, and it is natural to look for generalisations. However,
because of the expressive limitations of modal languages, this is not straightforward. The proof
of the Lindstdm Theorem for first-order logic typically proceeds by contradiction: to show that
an abstract first-order formula has a first-order equivalent, one typically build a model here
is true in one part;p in another, and uses the expressive power of first-order logic to link the
two parts of the model by a chain of partial isomorphisms, thereby reaping the contradiction.
This style of argument does not lift easily to modal languages: the basic modal language is too
impoverished to encode the chains of bisimulations linking the two parts of the model that would
be required to mimic this proof technique directly. However, as van Benthem [138] observed,
there is a way around this. The key idea is to strengthen the definition of a very abstract modal
language by demanding it fulfils thielativisationcondition:

DEFINITION 50 (Abstract modal logics). An abstract modal lodidgs a very abstract modal
logic that has theelativisation property for any £-formulay and proposition lettep not occur-
ring in ¢, there is a formul&elp, p) which is true at a modebt, w) iff ¢ is true at(M|p, w),
which is the submodel dbt consisting of just those points that satigfy

Relativisation is a natural property (most logics satisfy it) but the key point is to observe is
how it is used in the proof of the following theorem: in essence, it provides a model-theoretic tool
which enables us to mimic the first-order Lindstr proof without resorting to explicit codings of
bisimulations. This leads to van Benthem’s version of the LiriastTheorem for modal logic:

THEOREM 51. Supposel is an abstract modal logic extending the basic modal language.
Then/ coincides with the basic modal language/ffsatisfies compactness and invariance for
bisimulation.

Proof. We know that the basic modal language satisfies compactness (Proposition 4) and invari-
ance for bisimulation (Lemma 9) so the left to right direction is clear. For the reverse direction,
assume that has these properties. We claim that the following holdsan compact abstract
modal logic£ which is invariant for bisimulations, every formula has the finite depth property.
If we can show this, the result follows from Theorem 49.

We prove the claim as follows. Let be any formula inC. Suppose for the sake of a contra-
diction thaty lacks the finite depth property. Then for any natural nuntbirere exists a model
(M, w) and a cut-off versiogM; |k, w) which disagree on the truth value @f Without loss
of generality, assume that the following happens for arbitrarily ldrgé; |k, w) = ¢, and
(M, w) E —¢ (here we use the fact that abstract modal logics are closed under negation). Now
take a new proposition letter and consider the following sét of £-formulas:

{=p,Relp,p)} U {O"p | for all natural numbers:}.
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(By O0"p we meanp prefixed by a sequence af boxes.) Given our assumptions, this set is
finitely satisfiable: we choogesufficiently large, and maketrue in thek reachable part of one

of the above sequences of models. But then, by compactness for our abstract mod4l logic
there must be a modéM, v) for the whole sek at once.

But this leads to a contradiction as follows. We focus on the generated subifiddel)
consisting ofv and all points finitely reachable from it. Now, the identity relation is a bisimu-
lation between any pointed model and its unique generated submodel. Hence, by the assumed
invariance for bisimulation, formulas @ have the same truth value in any pointed model and
its generated submodel. Now, given our definitiortof~¢ holds in(,, v), and hence also in
(M, v). On the other hand, sin¢8t, v) = Rely, p), we have(91|p, v) = ¢. But by the truth of
all the formulas of the fornm™p, p holds in the whole generated submo#l,, v). Therefore it
is easy to see that out generated subm@igh, v) is also just(N,, v), so we have thap holds
in (N,,v). Contradiction. Hence the claim is established and the theorem follows. -

It remains to be seen how widely applicable this technique is. For example, it is not straight-
forwardly applicable to languages with the universal modality, as these lack the finite depth
property. However itan be lifted to the guarded fragment. As we mentioned in Section 6.5,
there is a notion of guarded bisimulation. And using this notion, together with the relativisation
technique leads to:

THEOREM 52. SupposeC is an abstract modal logic extending the guarded fragment. Then
L coincides with the guarded fragment ffsatisfies compactness and invariance for guarded
bisimulation.

Proof. See van Benthem [138]. -

7 ALTERNATIVE SEMANTICS

As we said at the start of this chapter, one of the most instructive ways of thinking about modal
logic is to view it as a tool for talking about graphs. But to view modal logic exclusively through
the lens of relational semantics would be a mistake; interesting alternatives exist, and in this
section we introduce three of them: algebraic semantics, neighbourhood semantics, and topo-
logical semantics. As we shall see, each of these semantics has something new to offer. But we
shall come across much that is familiar, for all three are linked in various ways with relational
semantics.

7.1 Algebraic semantics

The basic idea of algebraic semantics is simple: view modal formulas as terms (or polynomials)
and evaluate them in the appropriate type of algebra. So the key question is: what kinds of
algebra are appropriate for modal logic? The answeb@olean algebras with operatgrer
BAOs.

A boolean algebrds a triple2l = (A, +, x, —, 1,0) such that both+ (join) and x (mee}
are commutative and associative binary operations, each of which distributes over the other. The
unary operation- (complementmust satisfy the equations+ (—x) = 1 andx x (—z) = 0.
The nullary operations (aonstanty1 and0 must satisfy the equations< 1 = 1 andz+0 = z.
Even if you have never encountered boolean algebras before, a moments reflection should make
it clear that they are an algebraic mirror of propositional logic. To see this,¥easlv, x as
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A, —as—, 1asT, 0asl, and= as«. So it only remains to provide algebraic structure that
mirrors the diamonds. This motivates the following definition.

DEFINITION 53 (Boolean Algebras with Operators). A boolean algebra with operators, or
BAO, is a pair’3 = (2, m), where®l is a boolean algebra and is a unary operator ofl
that satisfies the equations(z + y) = m(x) + m(y), andm(0) = 0.

Note that the logical analogs of these two equations’dteV ¢) « (O V), andd L« 1,
both of which are valid in relational semantics. Thus we now have an algebraic mirror for all
components of the basic modal language.

We interpret the basic modal language in a BAO in the usual algebraic fashion. That is, given
a BAO, we view the proposition symbols as variables ranging across the elements of the algebra,
and interpret each logical operator by its corresponding algebraic operation. More precisely, let
% be a BAO, and/ be a function mapping proposition symbols to the element8;ofve call
such a functionV a valuation. We extend to a function that gives the result of evaluating
arbitrary basic modal formulas 8 via the following recursive clauses:

V(eve) = Vip)+ V()
V(eAp) = Vip) x V(y)
V(imp) = —Vip)
V(Cp) = mV(p)

It is now possible to prove the following algebraic completeness result:

THEOREM 54. A basic modal formula belongs to the minimal modal Idgiif it evaluates to
the valuel in all modal algebras under all valuations.

Proof. Straightforward. The key point is to use a technique standard in algebraic logic, namely
to create théindenbaum-Tarski Algebrar K. The elements of the Lindenbaum-Tarski Algebra
are equivalence classeskfprovably equivalent formulas, with operations defined with the aid
of the connectives. All and only th€-provable formulas evaluate to 1 in this algebra, and hence
the result follows. For a more detailed discussion, see Chapter 6 of this handbook. -

In fact, a far stronger result can be proveahy axiomatic extension df (that is,anynormal
modal) is complete with respect with some class of algebras. And the proof is not difficult. In
essence, one replicates the proof Kgrbut works with the Lindenbaum-Tarski Algebra which
satisfies the additional axiomatic constraints. As we saw earlier (recall Theorem 26) there is no
general completeness result for normal modal logics with respect to frames. This is an important
difference between algebraic and relational semantics.

Nonetheless, it is likely that some readers will feel a little cheated. Isn’'t the whole approach
really just syntax in disguise? After all, algebraic semantics matches the modal language with
algebraic operations that transparently mirror fundamental validities of the original logic. This
does not seem like genuine semantic analysis: it has more the flavour of linking two distinct, but
closely related, syntactic realms. Moreover, the algebraic satisfaction definition has global rather
than a local flavour.

This is true, but somewhat besides the point, for in spite of the general completeness result just
noted, we have not yet entered the heartland of algebraic semantics. For what algebraic semantics
really provides is a doorway to a larger mathematical universe. The power of algebraic semantics
comes from the wealth of ideas and techniques it enables us to bring to bear on problems in
modal logic. Some of these techniques take us back, via a novel path, to the heart of relational
semantics, but others take us to new territory. Let’s look a little deeper.
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An important theme in algebra is thiepresentatiorof abstract mathematical structures by
concrete set-theoretic structures. The point of a representation theorem is to show that some ab-
stractly specified class of algebras really does pick out an intended class of concrete structures.
So representation theorems are rather like completeness theorems: they show that the abstract
(often equational) specification is strong enough to ensure that every abstract algebra is isomor-
phic to a concrete algebra. Two classic examples are Cayley’s Theorem, which shows that every
finite group is isomorphic to a collection of permutations, and the Stone Representation Theo-
rem, which shows that every abstract boolean algebra is isomorphic to a field of sets (that is, a
boolean closed collection of subsets of soifiethat containd?”) with x viewed as intersec-
tion, + viewed as union, and viewed as and set-theoretic complement. Now, in 1952, several
years before relational semantics was officially inventé@tsdon and Tarski [74, 75] proved a
remarkable representation theorem for BAOs: they showed that every abstract BAO could be
represented as a relational structure. Inexplicably, their paper made no mention of modal logic.
This was unfortunate as their paper contained all the technical machinery needed toal@fine
tional semantics and provelational completeness results for most commonly occurring modal
logics. In essence, their result allows relational completeness proofs to be factored into an al-
gebraic completeness step (which makes use of the Lindenbaum-Tarski Algebra) followed by a
representation step (which turns this algebra into a relational structure. Nowadaymsken}

Tarski Theorem is rightly considered a cornerstone of modal logic; for a detailed proof of the
theorem, and examples of how to put it to work, see Chapter 6 of this handbook.

Another important theme goes under the nameuslity theory As we saw in Section 5,
there are four key transformations on frames (disjoint unions, generated submodels, bounded
morphisms, and ultrafilter extensions) and, as the Goldblatt-Thomason Theorem tells us, closure
of a frame class under these model-theoretic constructions is necessary and sufficient to ensure
its basic modal definability. But as we have already remarked (see Theorem 33) the original
proof of the Theorem waalgebraic What'’s the algebraic connection? This: each of these four
operations on frames corresponds to an operation on classes of algebras. Viewed this way, the
Goldblatt-Thomason Theorem can be seen as a modal version of the Birkhoff Theorem, which
identifies equationally definable classes of algebras with those classes of algebras that are closed
under the formation of subalgebras, homomorphisms, and products. For a detailed discussion,
we again refer the reader to Chapter 6.

But important as these two examples are, they merely hint at the wealth of techniques made
available by the algebraic connection. Algebraic semantics has repeatedly proved itself a pow-
erful analytical tool. To give another classic example, Blok [16] was able to give a detailed
analysis of frame incompleteness by drawing on algebraic methods. In particular, he did so by
investigatingsplittings (a concept from lattice theory) of the lattice of normal modal logics; for
a discussion of Blok's work, see Chapter 7 of this handbook. Moreover, in many cases alge-
braic methods have been adapted to richer modal languages. A nice example is provided by the
universal modality. In the algebraic setting, the universal modality allows us to dediseran-
inator term that is, a term denoting an operator that mage 0 and all other elements tb
Algebras with discriminator terms are particularly straightforward to work with (see Chapter 6
of this handbook) thus here algebraic semantics sheds interesting light on a relationally-natural
extension of the basic modal language. But algebraic semantics also illuminates areas where
relational semantics has little to say. For example, it turns out that the boolean structure of the
underlying algebras is not particularly significant. That is, it is possible to analyse modalities
algebraically even if welon't have full classical propositional logic at our disposal. Such logics
can be important in various settings, and relational semantics at present offers little in the way
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of insight. For further remarks and references on this application of algebraic semantics, see
Chapter 6 of this handbook.

7.2 Neighbourhood semantics

For some applications, relational semantics is too strong. For exatley ) — (CpV OY)

is valid under relational semantics. But if we re&g as making the game-theoretic assertion
that the player has a strategy forcing the outcome to satisfye might be inclined to reject it:

why should possession of a strategy for a disjunction imply possession of a strategy for one of
the disjuncts? For example, suppose we play a game with the following moves: you have the
right to decide whether we go to a movie or a concert, and | can decide which particular movie
or concert we go to. Suppose the movie | want to se€rash and that my favourite music

is Mozart It follows that | can forceCrashv Mozart, but (because it's you who determines

the movie/concert option) | can’t determine which of these two options will actually take place.
Similarly, if we interpretde epistemically we have further grounds for objection. For a start,
relational semantics validates the following principle:

O(p — ¢) — (Op — O9).

Moreover, it validates the following pattern of inference:Hf ¢ then = Og. These work
together to enforce a strong form of logical omniscience: if an agent kgowsen she knows
all its logical consequences.

Such considerations have lead to a search for weaker semantics. Perhaps the best known of
these is neighbourhood semantics (introduced in Montague [96, 97] and Scott [112] and explored
in Segerberg [113]). The key idea of neighbourhood semantics has a topological flavour: each
pointw in a model is associated with a collection of subsets of the domain (the neighbourhood
of w) and a formula of the forny is true atw iff the set of points in a model satisfying
belongs to the neighbourhood @f Let's make this precise. A neighbourhood model is a triple
(W, R, V) wherelV is a set of stated/ is a valuation, and relates pointsy € W to subsets of
W (thatis,R C W x 2W). For anyw € W, let N,, be {V C W | wRV'}; we call N,, the set
of neighbourhoods of.. We interpret boxed formulas as follows:

Mw = DOpiff {ve W | Mv = e} € Ny,
and use the dual definition for diamonds:
Mw = Cpiff {veW | MvlE e} & Ny.

Neighbourhood semantics is a generalisation of relational semantics. To see this, note that
given any relational modelt = (W, R,V) we can form a neighbourhood mod®t” =
(W, R™, V) by stipulating, for eaclw € W andV C W, thatR"wV iff V = {v € W | Rwv}.
That is, for eachw € W, N, is the singleton set containing the set of points that /are
accessible fromv. Hence, for allw € W and all basic modal formulag, we have that
Mw = ¢ iff M, w = . In short, we can turn any relational model into an equivalent
neighbourhood model.

But we cannot do the reverse. Consider a métle: (W, R, V') such thatV = {¢, u, v, w},
V(p) = {t,u} andV(q) = {u,v}, andN,, = {V(p), PIMQ}, wherePIMQ = {u, v, w}. Such
a model is shown in Figure 22; note tHAMQ is the set of points where — ¢ is true. Hence
M,u = O(p — q), asPIMQ € N,. Furthermoredt, v = Op, asV(p) € N,. However
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V(p) PIMQ

Figure 22. Neighbourhood model that falsifiegp — ) — (Op — Ovy) atw.

M, u = Og, for V(q) € N,. SoM, u = O(¢p — ) — (Op — Op). As this formula is valid
under relational semantics, no relational model equivalefit texists.

Moreover, the inferential principle characteristic of relational semantid¢s @i thenl= Oy)
no longer holds. To see this, it suffices to consider a m@@iebnsisting of a single point such
that N, = 0. ThendM,w = T, butd, w = OT. In fact, all that remains in neighbourhood
semantics is the weaker principle: ff ¢ < v thenl= Ogp < O¢. Thus neighbourhood
semantics does not enforce logical omniscience.

Neighbourhood semantics has been criticised as under-motivated. It may banish the spectre
of logical omniscience, but does it do so in a principled way? After all, isn’t there something
stipulative, indeed ad-hoc, about simply asserting that certain subsets and not others are in the
neighbourhood of a given point? There is a grain of truth in such criticisms, nonetheless we
should not be too quick to dismiss the approach. For some applications, asserting that certain
neighbouring regions are important is probably the best we can do in the way of semantic analy-
sis. Furthermore, like relational semantics, neighbourhood semantics offers arfrantee/ork
for semantics. Imposing further restrictions on neighbourhoods (for example, demanding that
neighbourhoods be superset closed) is a mechanism which permits finer-grained semantic anal-
yses to be attempted. See Chellas [24] for an introduction to some of the options here.

Neighbourhood semantics has some pleasant properties. For a start (assugmgINPACE,
the standard assumption) it is better behaved computationally that relational semantics:

THEOREM 55. The satisfiability problem for neighbourhood semantics is NP-complete.

Proof. See Vardi [139]. The key observation is that if a formulés satisfiable in a neighbour-
hood model, then it is satisfied in a model with at mggt states, wherép| is the number of
symbols ine. -

Moreover, neighbourhood semantics meshes well with the algebraic perspective; see Chapter 6
of this handbook for further discussion.

7.3 Topological semantics

Topological semantics is one of the oldest modal semantics, and the first in which deep technical
results were proved. In 1938, Tarski [95] showed Béfthe logic which in relational semantics

is complete with respect to transitive and reflexive frames) is complete with respect to topological
spaces. Then, in 1944, McKinsey and Tarski [95] showed$das the modal logic of the real
numbers, and indeed of any metric separable space without isolated points. Since this pioneering
work, topological semantics has been deeply (if somewhat sporadically) studied, and many inter-
esting results have been proved (see for example Esakia [38] and Shehtman [115]) but for many
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years it was rather isolated from the modal mainstream. More recently, however, partly because
of the growing interest in logics of space, there has been a revival of interest. For an overview of
developments in topological semantics since the time of Tarski, see Chapter 18 of this handbook;
here we will introduce its basic ideas in a way that emphasises connections with our account of
relational semantics. Our discussion is based on Aiello, van Benthem, and Bezhanishvili [2].

A topological spaces a pair(W, 1), whereW (the domair) is a non-empty set and (the
topology is a collection of subsets df that contains botl) and W, is closed under finite
intersections (that is, i), 0’ € 7 then so iSO N O’ € 7) and closed under arbitrary unions (if
{Oi}ier € TthensoidJ,.; O; € 7). Atopologyr such thatr = 2"V is calleddiscrete, and a
topology such that = {0, W} is calledtrivial. If (W, 7) is a topological space ard € 7 then
O is called aropen setlf w is a point in an open s&?, thenO is called aropen neighbourhood
of w. A closed sets the complement of an open set.

A topological models a triple9t = (W, 1, V) where(W, 7) is a topological space arid is
a valuation (in the sense familiar from relational semantics). We interpret propositional symbols
and booleans in the usual way, but what about the modalities? Boxed formulas are handled as
follows:

M, w = Opiff (30 € 7)(w € O and(Vu € O)(M,u |= ¢)).

That is,O¢ is true atw iff it is true at all the points of some open neighbourhoodoDiamonds
are handled dually:

M, w = Cpiff (VO € 7)(w € Oimplies(Fu € O)(IM, u = ¢)).

That is,O ¢ is true atw iff it is true at some point in each open neighbourhooayof

At first blush this looks very different from relational semantics. And thaeesome obvi-
ous semantic differences. For example, the characteristic axior84, elamelyOp — p and
Op — OOdp, are valid on all topological models, so the minimal logic is stronger than in rela-
tional semantics. But a closer look reveals the similarities. For a start, like relational semantics,
topological semantics is local: the truth value of a formula at a point only depends on what hap-
pens inside the open neighbourhoods of that point. More precisely, suppose ithat point
in a topological modedt, and thatO is an open neighbourhood af. Let 9t|O be the model
with domainO whose open sets are all the open subset3 of 9Jt, and whose valuation is the
restriction of the valuatio” of 9t to O (thatisV|O(p) = V(p) N O). Then a simple induction
shows that for all basic modal formula and all pointsw € O, M, w | ¢ iff MO, w = .
Nor is it hard to find other similarities. For example, the fact ®has the finite model property
with respect to relational semantics is neatly matched by the fact that the basic modal language
has the finite model property with respect to topological semantics.

But the similarities run deeper than these examples might suggest. In particular, topological
semantics gives rise to a natural notion of bisimulation:

DEFINITION 56 (Topo-bisimulation). A topo-bisimulation between two topological models
M= W,r,V)andd' = (W’,7/,V’) is a non-empty binary relatioi’ between their do-
mains (thatisE C W x W’) such that whenever Ew’ we have that:

Atomic harmony: w andw’ satisfy the same proposition symbols,

Zig: if w € O € 7, then there is an open g8t € 7’ such thatw’ € O’ and(Vu’' € O')(Ju €
O)(uEv’), and

Zag: if w' € O' € 7/, then there is an open s@t € 7 such thatw € O and(Yu € O)(Fu’ €
O (uEW).
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If there is a topo-bisimulation between two topological mod#sand 91, then we say thait
and91 are topo-bisimilar. Moreover, we say that two states are topo-bisimilar if they are related
by some topo-bisimulation.

Let's put the zig clause in words. It says that for two poiatandw’ to be topo-bisimilar,
then for any open neighbourhod#lof w it must be possible to find an open neighbourhaédd
of w’ such that every point’ in O’ is topo-bisimilar to some: in O. Figure 23 illustrates this
idea (the dotted line connectingandu’ needs to be interpreted universalueryu is linked to
someu’).

Figure 23. Zig (and zag) for topo-bisimulations

Such bisimulations are topologically natural. Two basic concepts of topologypare maps
andcontinuous mapsA function f between topological spacé®, 7) and (W', ') is called
open if for allO € 7 we have thatf(O) € 7/, and it is called continuous if for alD’ € 7/
we have thatf ~1(0’) € 7. Itis easy to see that every open and continuous map induces topo-
bisimulations: given a valuation on one space, take its image in the other, and the resulting
models are topo-bisimilar. But topo-bisimulations are also modally natural. For a start, we have
the following analog of Lemma 9:

LEMMA 57 (Topo-bisimulation Invariance Lemma)f £ is a topo-bisimulation betweent =
(W,r,V)and9W' = (W', 7/, V'), andwFEw’, thenw and v’ satisfy the same basic modal
formulas.

Proof. A routine induction. -

As a simple illustration, we noted above tlatand93t|O (the localisation ofJt to some open
setO) were equivalent. But this is unsurprising. The identity relation between the domains of
the two models is a topo-bisimulation, hence the result is a special case of this lemma.

What about the converse? Characterisation results for the general case are tricky to state (we
would need to discuss what a suitable correspondence language for topological semantics is, and
this would take us too far afield). But vl have an analog of Proposition 11:

PROPOSITION 58.If pointsw andw’ from two finite topological mode®t and 91 satisfy the
same modal formulas, then there is a topo-bisimulafibbetweerit and9t such thatw Fw’.

So far so good. But just how expressive is the basic modal language in the new setting? To
pose the question a little more forcefully: what (interesting) topological conditions can basic
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modal language enforce via the concept of validity? Here’s one example. The formula
p< Up

is valid on a topological model iff that model bears the discrete topology (that is, iff every subset
of the domain is open). This is a pleasant, but many fundamental properties lie beyond the reach
of the basic language. For example, a topological spéce) is connectedff the only elements

of 7 that are both open and closed &reand({. But this condition is not basic modal definable.

For suppose for the sake of a contradiction that some formullbes define connectedness.
Consider the topological space with doméin 2} under the discrete topology; this spacad
connected a$1} and{2} are both open and closed. Hence we can define a n¥ideh this

space that will falsify, at some point, say. But then?t|{1} will falsify ¢ at1 too, as?t and

M|{1} are topo-bisimilar. Buf)t|{1} bears the trivial topology, hence it is a connected space,

so it should validateo. We conclude that connectedness is undefinable.

All'in all, the basic modal language turns out to be disappointingly weak when it comes to
standard topological conditions. But then why stick with the basic modal language? As readers
of this chapter are well aware, there are interesting ways of augmenting modal expressivity, and
recently these have begun to be explored in the topological setting. For example, Shehtman [116]
and Aiello and van Benthem [1] observe that connectivity becomes definable when the universal
modality is added to the language:

A(Op — Op) — (Ap Vv A-p).

And Gabelaia notes that ttg condition (for any two points andy there exist either an open
neighbourhood, of  such thaty ¢ O, or an open neighbourhodad, of y such that: ¢ O,))
is definable in the basic hybrid language,

@i_‘j — (@jD_‘i V @zD_‘])
and that thel’; condition (every singleton set is closed) is too:
i i

Gabelaia [54] proves an analog of the Goldblatt-Thomason for the basic modal language with
respect to topological semantics and Sustretov [121] has extended this to the basic hybrid lan-
guage enriched with the universal modality; it turns out thatltheondition (every distinct pair

of points is contained in disjoint open neighbourhoods) is not definable in this richer language.

8 MODAL LOGIC AND ITS CHANGING ENVIRONMENT

Traditional motivations for and applications of modal logic came from philosophy, and dealt with
such topics as modality, knowledge, conditionals, and obligations. Other strands dealt with more
mathematical topics, leading to modal logics of time, space, or provability. As time went by,
additional influences made modal logic even more diverse. Sources included computer science
(for modal logics of computation and general processes), Atrtificial Intelligence (for modal log-
ics for knowledge representation, non-monotonic reasoning, and belief revision), linguistics (for
modal logics of grammatical structure), and the internet (for modal logics of trees). This web of
new interfaces is still growing. Modern computer science, with its emphasis on new informa-
tion carriers and networks of intelligent computing agents, also brings in modal logics of image
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processing, agency and security. And the empirical social sciences are joining in too, witness
current applications of modal logic in economic game theory, or to model the powers of agents
in social choice theory.

In the face of this diversity, the resilience of relational semantics is quite remarkable. Although
nearly half a century old, its central ideas remain applicable, and applicable even when we enrich
our conception of what a modal logic actually is. But what the central ideas of relational
semantics? In essence, this chapter has tried to make the following point clear: during the 50
or so years that relational semantics has existed, our understanding of what it is, and what it is
good for, has become deeper. Originally conceived as a way of distinguishing and charactersing
logics (via soundness and completeness theorems) modal logicians have gradually unearthed the
deeper mathematical themes that lie behind the seemingly modest facade of relational semantics,
themes such as the expressivity at the level of models versus the level of frames, the importance of
bisimulation and other game-like constructions, the systematic links between the modal universe
and many varieties of classical logic, ranging from first-order logic, through second-order logic,
to the farther reaches of infinitary logic. Turning this perceived semantic unity into theorems is
not always easy; work on combined modal logic still tends to be heavy on negative results, and
first-order modal logic remains difficult territory. But unifying themes, such as guarding, and the
possibility of applying ideas from abstract model theory, have emerged.

Indeed, we are tempted to conclude by playing devil's advocate. Even the alternative se-
mantics we have encountered indicate that something semantically central lies at the heart of
relational semantics. For example, tlmdson-Tarski Theorem reveals that relational semantics
has a important algebraic core, and our excursion to the land of topological semantics revealed
the centrality of the concept of bisimulation. Prediction is always a dangerous game (especially
when it is about the future) but we believe that the interplay between theory and practice that has
characterised research on modal logic throughout it history will continue to deepen our under-
standing of its semantic core. And, forced to place our bets, we would probably say: modal logics
of games will be a deep source of further insight, as will the co-algebraic semantics discussed in
Chapter 6 of this handbook.
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