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Chapter 2 EPISTEMIC LOGIC AND INFORMATION AS RANGE 

 
Epistemic logic was developed originally for the analysis of the philosophical notion of 

knowledge (Hintikka 1962), and as such, it has generated controversy. In this book, we use 

it in a completely neutral manner, as a formalization of the notion ‘information as range’ in 

the Introduction. The hard information which an agent currently has is given by a set of 

possible worlds, and what it ‘knows’ is that which is true in all worlds of that ‘range’ (van 

Benthem 2005). This picture seems close to the common sense notion of information, and 

it makes knowledge a standard modality. We present some basics in this chapter, stressing 

points of methodology that will recur. We refer to Blackburn, de Rijke & Venema 2000, 

Blackburn, van Benthem & Wolter, eds., 2006 for all details in what follows. 11 

Occasionally, we will return to issues having to do with the philosophical interpretation of 

the system, when this makes sense from our general informational point of view.  

 
This first chapter presents some known features of epistemic logic, where the selection of 

topics reflects the two main uses of any logical system. First, its language and semantics 

provide a way of describing situations, checking assertions for truth or falsity, engaging in 

communication, and the like. This leads to semantic issues of definition and expressive 

power, and these will be central in this book. The second use of a logical system is as a 

syntactic calculus of reasoning, providing valid inference forms, and deductive axiomatic 

systems have tended to dominate modal logic, with completeness theorems tying them to 

the semantics. In this book, the second aspect will be present, but not dominant. To me, 

modal formalisms are not primarily about inferential ‘life-style choices’ like K, S4 or S5, 

the way many people think of the field, but about ways of saying things about agency 

simply and perspicuously. And tied up with this, there is a third motive of computational 

complexity for key tasks in the two earlier perspectives. We want to strike a good balance 

between expressive power and computational complexity of logical tasks (cf. Blackburn & 

van Benthem 2006), and this will also provide our first dynamic angle, in the form of logic 

games for evaluation and other tasks. Our presentation is not a textbook for epistemic logic, 

                                                 
11 Epistemic logic is flourishing today in computer science, game theory, and other areas beyond its 

original habitat: cf. Fagin et al. 1995, van der Hoek & Meijer 1995, van der Hoek & Pauly 2007. 
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12 but a view of the kind of standard logical system which we will ‘dynamify’ in this book – 

not to replace it with something else, but to make it do even further things.  
 
At this point, readers who know their epistemic logic might skip to the next chapters. 
 
1.1 The basic language     
 
We start with the simplest epistemic base language, describing knowledge of individual 

agents, taken from some set of agents I which is relevant to the application at hand. But let 

us first illustrate what sort of situation this language is typically supposed to describe. 

 
Example  Questions and Answers.  

A stranger approaches you in Amsterdam, and asks 
 
  Q Is this building the Rijksmuseum? 

 
As a well-informed and helpful Dutch citizen, you answer truly 
 
 A Yes. 
 
As explained in the Introduction, this scenario involves a mix of two factors: (a) factual 

information, and (b) information about the information of others. In particular, the answer 

produces common knowledge between Q and A of the relevant topographical fact.     ! 
 
It is worth having a logic that gets clear on these matters, and epistemic logic, though 

created to describe cogitation by lonesome thinkers, is jus right for this interactive purpose. 
 
Definition  Basic epistemic language. 

The basic epistemic language EL has a standard propositional language with proposition 

letters and Boolean operators, plus modal operators Ki! ('i knows that !'), for each i"I, and 

CG!: ‘! is common knowledge in the group G’. The inductive syntax rule is as follows, 

where the ‘p’ stands for any choice of atoms from some set of proposition letters: 
 
    p | ¬! | !#$ | Ki! | CG!  

 
We write <i>! for the existential modality ¬Ki¬!: which says intuitively that ‘agent i 

considers ! possible’. The existential dual modality of CG!  is written as  < CG>!. 13    ! 

                                                 
12 A textbook presentation of modal logic in this spirit are the lecture notes van Benthem 2008. 
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Through its agent-indexed modalities, this basic language describes the preceding scenario. 
 
Example  Questions and Answers, continued.  

Let Q ask a factual question "%?", to which A answers truly: "Yes". The presupposition for 

a normal truthful answer is that A knows that %: which may be written as KA%. The 

question itself, if it is a normal co-operative one, conveys at least the presuppositions (i) 

¬KQ% !  ¬KQ¬% ('Q does not know if %') and (ii) <Q>(KA% # KA¬%) ('Q thinks that A may 

know the answer'). After the whole two-step communication episode, % is known to both 

agents: KA% !  KQ%, while they also know this about each other: KQKA% !  KAKQ%, etcetera. 

Indeed, they achieve the ‘limit notion’ of common knowledge, written as C(Q, A}P.     ! 

 
Common knowledge is a notion whose importance has been recognized in many areas: 

from philosophy to game theory, computer science, linguistics, and psychology. 

 
2.2 Models and semantics     

        
The preceding assertions only make precise sense when backed up by a formal semantics. 

Here is the formal version of the earlier intuitive idea of ‘information as range’. 
 
Definition  Models. 

Models M for the language are triples (W, {&i | i"G}, V), where W is a set of worlds, the 

&i are binary accessibility relations between worlds, and V is a valuation assigning truth 

values to proposition letters at worlds. In what follows, our primary semantic objects are 

pointed models (M, s) where s is the actual world representing the true state of affairs.    ! 
 
These models stand for collective information states of a group of agents. We impose no 

general conditions on the accessibility relations, such as reflexivity or transitivity – leaving 

a ‘degree of freedom’ for a modeler using the system. Many of our examples work well 

with equivalence relations (reflexive, symmetric, and transitive) – and such special settings 

may help the reader. But in some chapters, we will need arbitrary accessibility relations 

allowing end-points without successors, to leave room for false or misleading information. 
 

                                                                                                                                                     
13 Common knowledge is a higher-order notion, while individual modalities are first-order universal 

quantifiers. But in this initial phase of our presentation, this technical difference will not matter. 
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Example Setting up realistic models. 

In what follows, we shall mainly be using very simple epistemic models to illustrate our 

points. Even so, a real feel for the elegance and utility of the approach only comes from the 

‘art of modeling’, i.e., finding models for real scenarios. Doing so also has the virtue of 

dispelling delusions of grandeur about ‘possible worlds’. Consider this simple game: three 

cards ‘red’, ‘white’, ‘blue’ are distributed over three players: 1, 2, 3, who get one each. 

Each player can see her own card, but not that of the others. The real distribution over the 

players  1, 2, 3  is red, white, blue (rwb). Here is the resulting information state: 
 
      rwb                 1               rbw 

    2                        2 

                                  3        

 bwr                 3           wbr 

                3 

    1              1 

      brw             2     wrb  

 
This pictures the 6 relevant states of the world (the ‘hands’, or distributions of the cards), 

with the appropriate accessibilities (equivalence relations in this case) pictured by the 

uncertainty lines between hands. E.g., the single 1-line between rwb and rbw indicates that 

player 1 cannot distinguish these two situations, whereas 2 and 3 can (they have different 

cards in them). In particular, the diagram says the following, intuitively. Though they are in 

rwb (as an outside observer might notice), no player knows this. Of course, the game itself 

is a dynamic process yielding further information, which will be our theme in Chapter 3.  ! 
 
Over these structures, which may often be pictured graphically and concretely as a sort of 

‘information diagrams’, we can now interpret the epistemic language: 
 
Definition Truth conditions. 

 M, s |= p iff V makes p true at s 

 M, s |= ¬! iff not M, s |= ! 

 M, s |= ! '$ iff M, s |= !  and M, s |= $ 

 M, s |= Ki! iff for all t with s &i t: M, t |= ! 
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 M, s |= CG! iff for all t that are reachable from s by some  

finite sequence of &i steps (i"G): M, t |= ! 14     ! 
 

Example  A model for a question/answer scenario. 

Here is how a question answer episode might start (this is just one of many appropriate 

initial situations!). In the following diagram, reflexive arrows are presupposed, but not 

drawn. Intuitively, agent Q does not know whether p, but A is fully informed about it: 

 
 
 p          Q  ¬p 

         

 
In the black world, the following formulas are true:  
 

p, KAp, ¬KQp !  ¬KQ¬p, KQ(KAp # KA¬p),  

C(Q, A} (¬KQp !  ¬KQ¬p), C(Q, A} (KAp # KA¬p)  

 
This is an excellent situation for Q to ask A whether p is the case: he even knows that she 

knows the answer. Once the answer “Yes” has been given, intuitively, this model changes 

to the following one-point model where maximal information has been achieved: 

 
 p            

         

Now, of course C{Q, A}p holds at the black world.         ! 
 
Over such models, an epistemic language sharpens distinctions. For instance, that everyone 

in a group knows ! is not common knowledge, but universal knowledge EG!, being the 

conjunction of all formulas Ki!  for all i"G. Now let us broaden things still further. 

 
From communication to observation and learning Many of the above scenarios can also 

be viewed as ways of getting information from an arbitrary source: e.g., ‘Nature’ in the 

case of observation. In fact, performing observations, or even more general learning 

scenarios are also excellent ways of interpreting the semantics that we have given here. We 

have just emphasized the conversational setting because it is lively and intuitive. 

 

                                                 
14 Common knowledge acts as a dynamic logic modality  [((i"G &i)

*]!. This will return below. 
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From semantics to new language design There is something conservative to ‘providing a 

semantics’. A language is given, and we seek an interpretation that ‘fits’ it to some model 

class. But epistemic models are appealing in their own right, as geometrical structures for 

informational situations. And then, there is a question what language best describes these 

structures, perhaps changing the given formalism. We return to this issue below. 

 
Social information is still richer To illustrate the preceding point, but also a further topic, 

we notice that the social character of group information suggests additional operators.  

 
Example From implicit to explicit group knowledge. 

Consider a setting where both agents have information that the other lacks, say as follows: 

  
 
           p, q           Q            ¬p, q 

         

       A 

         p, ¬q 

  

Here, the black dot is the actual world. Now the most cooperative scenario would be for Q 

to tell A that q is the case (after all, this is something he knows), while she can tell him that 

p is the case. Intuitively, this reduces the initial three-point model to the one-point model 

where p ' q is common knowledge. Other three-world examples model other interesting, 

sometimes surprising conversational settings (cf. van Benthem 2006).        ! 

 
Another way of describing what happens in the preceding example is that, when Q, A do 

the best they can in informing each other, they will cut things down to the intersection of 

their individual accessibility relations. This suggests a new natural notion for groups: 

 
Definition Distributed knowledge. 

Intuitively, a formula ! is implicit or distributed knowledge in a group, written DG!, when 

agents could come to see it by pooling their information. More technically, extending our 

language and the above truth definition, this involves intersection of accessibility relations: 

 
  M, s |= DG% iff for all t with s )i"G &i t: M, t |= %     !    
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Intuitively, groups of agents can turn their implicit knowledge into common knowledge 

(modulo some technicalities) by communication. We will pursue this in Chapters 3, 10. 

 
Digression: epistemic models once more Though our system works over arbitrary models, 

in practice, equivalence relations are common. Our card examples were naturally described 

as follows: each agent has possible ‘states’ it can be in (say, the card deals it may receive), 

and worlds are global states consisting of vectors X, Y with each agent in some local state. 

Then, clearly, the natural accessibility relation goes via component-wise equality: 

 
 X &i Y  iff  (X)i = (Y)i. 

 
Another case are the models for games in Chapters 9, 14, with worlds vectors of strategies 

for players. The latter application is a sort of ‘normal form’ (van Benthem 1996): 

 

Fact  Every multi-S5 model is representable as a sub-model of a vector model. 
 
Proof  Each agent has for its states the equivalence classes of its accessibility relation, and 

this is an isomorphism since the i- equivalence classes of worlds s, t are equal iff s &i  t.  ! 

 
2.3 Validity and axiomatic systems 
 
Validity of formulas % in epistemic logic is defined as usual in semantic terms, as truth of % 

in all models at all worlds. Consequence may be defined through validity of conditionals. 

 
Minimal logic The following completeness result says that the validities over arbitrary 

models may be described purely syntactically by the following calculus of deduction: 15 

 
Theorem The valid formulas are precisely the theorems of the minimal epistemic  

 logic axiomatized by (a) all valid principles of propositional logic, (b) the  

 definition <>% * ¬K¬%, (c) modal distribution K(% & $) & (K% & K$), 

 together with the inference rules of Modus Ponens (from % & $ and % to $‘) 

 and Necessitation (‘if % is a theorem, then so is K%’). 

                                                 
15 We will often drop agent subscripts for K-operators when they play no essential role. 
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Proof  The proof for this basic result can be found in any good textbook. Modern versions 

employ Henkin-style constructions with maximally consistent sets over some finite set of 

formulas only, producing a finite counter-model for a given non-derivable formula.    ! 

 
One axiom of this simple calculus has sparked continuing debate, viz. the distribution law 

K(% & $) & (K% & K$). This seems to say that agents’ knowledge is closed under logical 

inferences, and this ‘omniscience’ seems unrealistic. At stake here is our earlier distinction 

between semantic and inferential information. Semantically, with processes of observation, 

an agent who has the hard information that % & $ and that %, also has the hard information 

that $. But in a more finely-grained perspective of inferential information, geared toward 

processes of elucidation, this need not be the case at all. We will not join the fray here, but 

Chapter 5 shows one way of introducing inferential information into basic epistemic logic. 

 
Another point to note is this. Deductive systems may be used in two modes. They describe 

(a) agents’ own explicit reasoning ‘inside’ scenarios, or (b) ‘outside’ reasoning by theorists 

about them. In some settings, the difference will not matter: the modeler is ‘one of the 

boys’ – but sometimes, it may. In this book, we will not pursue discussions between ‘first 

person’ and ‘third person’ perspectives on epistemic logic, as we can accommodate both.   

 
Stronger epistemic logics and frame correspondence  On top of this minimal system, two 

further steps go hand in hand: helping ourselves to stronger axioms endowing agents with 

further features, and imposing further structural conditions on accessibility in our models. 

For instance, here are three more axioms with vivid epistemic interpretations:  

 
 K! & !    Veridicality 

 K! & KK!    Positive Introspection 

 ¬K! & K¬K!    Negative Introspection  

 
The former seems uncontroversial (knowledge is ‘in synch’ with reality), but the latter two 

have been much-discussed, since they assume that, in addition to their logical omniscience, 

agents now also have capacities of unlimited introspection into their own epistemic states. 

Formally, these axioms correspond to the following structural conditions on accessibility: 
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 K! & !  reflexivity  +x: x & x 

 K! & KK!  transitivity  +xyz: (x & y ' y & z) , x & z 

 ¬K! & K¬K!  euclidity   +xyz: (x & y ' x & z) , y & z 

 

The term ‘correspondence’ can be made precise using ‘frame truth’ of modal formulas 

under all valuations on possible worlds with accessibility (modaL Correspondence Theory, 

cf. van Benthem 1984). Powerful general results exist describing which axioms match up 

with what conditions: first-order like here, or definable in higher-order languages. We will 

occasionally refer to such techniques, but refer to the literature for details. 

 
The complete deductive system with all the above axioms is called S5, or ‘multi-S5’ when 

we have more than one agent. Taking the preceding conditions together, it is the logic of 

equivalence relations over possible worlds. What may be surprising is that this logic has no  

‘interaction axioms’ relating different modalities Ki, Kj. But none are plausible. 

 
Example Your knowledge and mine do not commute. 

The following model provides a counter-example to the implication K1 K2 p & K2 K1 p.   Its 

antecedent is true in the black world to the left, but its consequent is false: 

  
 
                      2          1   

       p        p        ¬p 

         

 

Such implications only hold when agents stand in special informational relationships.    !      

      
In the dynamic-epistemic logics of Chapter 3 and later ones, some operator commutation 

principles will hold, but then between epistemic modalities and action modalities. 

 
In between the minimal logic K and S5, many other epistemic logics have a following, such 

as ‘KD45’ for knowledge. In this book, however, we will mostly use intuitions from both 

extremes, though the reader will see that our results apply much more generally. 

 
Once again: deductive versus expressive power The traditional emphasis in modal logic is 

on different axiomatic systems for the same language. This is the dimension of deductive 
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power, and it corresponds to modal theories of different model classes. But there is an 

independent dimension of expressive power, i.e., which language to use for describing our 

structures, weaker or stronger. The basic epistemic language is one candidate, but there are 

many extensions, adding ‘universal modalities’ ranging over all worlds (accessible or not), 

or ‘nominals’ picking out single worlds. The most striking addition to the base language in 

the epistemic setting has been the earlier-mentioned modality of common knowledge. 

 
Theorem   The complete epistemic logic with common knowledge is axiomatized   

 by the following two principles in addition to the minimal epistemic logic, 

 where EG is the earlier modality for ‘everybody in the group knows’: 

  CG !  *  ! & EG CG !   Fixed-Point Axiom 

  (! & CG (!&EG !))  & CG !  Induction Axiom 

 
These axioms are also of independent interest for what they say. The Fixed-Point Axiom 

expresses an intuition which has been called ‘reflective equilibrium’: common knowledge 

of ! is a proposition implying ! of which every group member knows that it is true. On top 

of this, the Induction Axiom says that it is not just any equilibrium state of this kind, but 

the largest one: technically, we have a ‘greatest fixed-point’ (cf. Chapters 3, 4 below). 

 
2.4 Invariance and expressive power 
 
Expressive power of languages is measured by their powers of distinguishing different 

models, or equivalently, by what they consider indistinguishable. Thus, betweenness is 

fundamental to geometry because this configuration of objects is invariant under the natural 

spatial movements of translation and rotation. For first-order logic, a basic invariance is 

isomorphism: structure-preserving bijection between models: first-order formulas cannot 

distinguish between a tuple of objects a in one model M, and its image f(a) in another 

model N related to M via an isomorphism f. 16 This style of analysis is quite widespread. 

 
First-order translation For a start, viewed as a description of the above epistemic models, 

our language is weaker than a first-order logic whose variables range over worlds: 

                                                 
16 Another candidate is ‘potential isomorphism’: van Benthem 2002 has some extensive discussion. 
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Fact There exists an effective translation from the basic epistemic language into  

 first-order logic yielding equivalent formulas. 

 
Proof  This is the well-known ‘standard translation’, taking, e.g., an epistemic formula       

p ' K!q into an equivalent first-order formula Px ' +y(Rxy & -z(Ryz ' Qz). The latter 

formula is a straightforward transcription of the truth conditions of the epistemic one.    ! 

 
These modal translations have only special ‘bounded’ or guarded’ quantifiers over 

accessible worlds, making them a rather special subclass of first-order logic as a whole. 

This also shows in powers of distinction. For instance, the full first-order language can 

distinguish between a one-point reflexive model and an irreflexive 2-cycle - but it should 

be intuitively clear that these two models verify the same epistemic formulas everywhere.  

 
Bisimulation and information equivalence Here is a notion of semantic invariance which 

fits the modal language like a Dior gown: 

 
Definition    A bisimulation between two models M, N is a binary relation .  between their 

states s, t such that, whenever s .  t, then (a) s, t satisfy the same proposition letters (‘local 

harmony’), (b1) if s R s', then there exists a world t' with t R t' and s' .  t', and (b2) the 

same ‘zigzag’ or ‘back-and-forth clause’ holds in the opposite direction.  

 
     . 
   x    y 

 M        N 

  z      u 

   ! 
 
Clause (1) expresses 'local harmony', the zigzag clauses (2) the dynamics of simulation.  

Bisimulation is usually given a ‘procedural’ spin: it identifies processes that run through 

similar states with similar local choices. Thus, it gives one answer to the crucial question: 

 
 When are two processes the same? 
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We say ‘one answer’: as there are often different natural ways of providing a criterion of 

identity between structures, 17 and process theory is no exception (cf. van Benthem 1996). 

We will meet the same fundamental issue with games in Chapter 14 below, but right here, 

we just note that structural identity also makes sense for information structures: 

 
 When are two information structures the same? 

 
Example Bisimulation-invariant information structures 

Our earlier question-answer example has a bisimulation with the following variant: 

 
  !  *                 *  ! 

         Q            

        Q         ¬!                 Q    

  ¬!       A   ¬! 

 
In a natural sense, both models represent the same information state for the agents.  

 
Bisimulation also occurs naturally in information update changing a current model. 

Suppose that the initial model is like this, with the actual world indicated by the black dot: 

 

  p   2    ¬p 

   1 
   
             p 

 
All three worlds satisfy different epistemic formulas. Now, despite her uncertainty, in the 

actual world, agent 1 does know that p, and can say this – updating to the model 
 
  p  

    1 

  p 

 

                                                 
17 This diversity is sometimes called ‘Clinton’s Principle’: it all depends on what you mean by ‘is’. 
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But here the two worlds are intuitively redundant, and indeed this information state for the 

two agents has an obvious bisimulation to just the one-point model 

 
  p             ! 

               

More generally, each model has a smallest bisimulation contraction satisfying the same 

modal formulas. But bisimulation can also make models larger, turning them into trees 

through the method of ‘unraveling’, providing a geometrically perspicuous ‘normal form’: 

 

unravels to

<1>1

2

<1,1> <1,2>

<1,1,1>          <1,1,2>

<1,1,1,1>

 
 
Thus, informational equivalence can work both ways, depending on what we find useful. 

 
Invariance and definability Some basic model-theoretic results tie bisimulation closely to 

truth of modal formulas. For convenience, we restrict attention to finite models  – but this is 

easily generalized in the theory of modal logic. We formulate results for general relations: 

 
Invariance Lemma The following two assertions are equivalent: 

 (a) M, s and N, t  are connected by a bisimulation, 

 (b) M, s and N, t  satisfy the same epistemic formulas. 

 
Proof The direction from (a) to (b) is a straightforward induction on the construction of 

epistemic formulas. In the opposite direction, for finite models, we can even make do with 

the basic modalities. Let (M, x) Z (N, y) be the relation which holds if the worlds x and y 

satisfy the same epistemic formulas. For a start, then, s Z t. Clearly also, Z-related worlds 

satisfy the same proposition letters. Now, assume that x Z y, and let x & x’. Suppose for 

contradiction, that there is no world y’ with y & y’ satisfying the same modal formulas. 

Then there is a modal formula /y’ true in x’ and false in y’. Taking the conjunction / of all 

these formulas /y’ for all successors y’ of y, we see that / is true in x’, and so !/ is true in 
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world x, whence !/ is also true in y, as x Z y. But then there must be a successor y* of y 

satisfying /: which contradicts the construction of /. 18        ! 

 
This connection between the epistemic language and bisimulation-invariant structure raises 

the issue to which extent these are two sides of the same coin. This issue is relevant to the 

choice of ‘information states’ that we will be using later on in this book. The modal theory 

of a world w in a model M is an explicit record of everything that is true ‘internally’ at w 

about the facts, agents’ knowledge of these, and their knowledge of what others know. By 

contrast, models (M, w) themselves locate the same information in the local valuation of a 

world plus its pattern of interaction with other worlds – just as category theorists describe a 

mathematical structure ‘externally’ by its connections to other structures in a category 

through the appropriate morphisms. The following result says essentially that states in an 

epistemic model and maximally consistent epistemic theories are indeed equivalent. 

 
State Definition Lemma For each model M, s there exists an epistemic formula  

 0  (involving common knowledge) such that the following are equivalent: 

 (a) N, t |= 0 

 (b) N, t has a bisimulation . with M, s such that s .  t 

 
Proof   This result from Barwise & Moss 1997 adapts the technique of ‘Scott sentences’ 

(our version follows van Benthem 1997). This time, we show the proof for the case of S5, 

but it works for arbitrary accessibility relations. Any finite multi-S5 model M, s falls into  

maximal 'zones' of worlds that satisfy the same epistemic formulas in our language.  

 
Claim 1 There exists a finite set of formulas !i (1!i!k) such that  

 (a) each world satisfies one of them, (b) no world satisfies two of 

 them (i.e., they define a partition of the model), and (c) if two worlds  

 satisfy the same formula !i, then they agree on all epistemic formulas. 

 
To see this, take any world s, and find 'difference formulas’ 1s, t between it and any t not 

satisfying the same epistemic formulas: say s satisfies 1s, t and t does not. The conjunction 

                                                 
18 The lemma even holds for arbitrary models, provided we take epistemic formulas from a language 
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of all 1s, t is a formula !i true only in s and the worlds sharing its epistemic theory. We may 

assume !I also lists all information about proposition letters true and false throughout their 

‘zone’. We also make a quick observation about uncertainty links between these zones: 

 
# If any world satisfying !I  is ~a-linked to a world satisfying !i,  

 then all worlds satisfying !I  also satisfy <a>!i   

 
Next take the following description 0M, s of M, s: 

 
(a)   all (negated) proposition letters true at s plus the unique !i  true at M, s 

(b)   common knowledge for the whole group of 

 (b1) the disjunction of all !i 

 (b2)  all negations of conjunctions !I & !j  (i"j) 

 (b3) all implications !i & <a>!j for which situation  #  occurs 

 (b4) all implications !i & [a]#!j where the disjunction runs  

  over all situations listed in the previous clause. 

 
Claim 2 M, s |= 0M, s 

 
Claim 3 If N, t  |= 0M, s, then there is a bisimulation between N, t and M, s  

 
To prove Claim 3, let N, t be any model for 0M, s. The !i partition N into disjoint zones Zi of 

worlds satisfying these formulas. Now relate all worlds in such a zone to all worlds that 

satisfy !i in the model M. In particular, t gets connected to s. We check that this gives a 

bisimulation. The atomic clause is clear by construction. But also, the zigzag clauses follow 

from the given description. (a) Any ~a-successor step in M has been encoded in a formula 

!i & <a>!j which holds everywhere in N, producing the required successor there. (b) 

Conversely, if there is no ~a-successor in M, this shows up in the limitative formula !i 

& [a]#! , which also holds in N, so that there is no 'excess' successor there either.     !  

 
The Invariance Lemma says that bisimulation has the right fit with the modal language. 

The State Definition Lemma strengthens this to say that each semantic state is captured by 

                                                                                                                                                     

with arbitrary infinite conjunctions and disjunctions. We forego such technicalities here.  
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one epistemic formula. This result extends to arbitrary models provided we are willing to 

use formulas from a language allowing arbitrary infinite conjunctions and disjunctions. 

 
Example Defining a model up to bisimulation. 

Consider the two-world model for our earlier basic question-answer episode. Here is an 

epistemic formula which defines its !-state up to bisimulation: 

 
  ! & C{Q, A} ((KA! # KA¬!) & ¬KQ! & ¬KQ¬!)        ! 

 
These results allows us to switch, in principle, between semantic and syntactic accounts of 

information states. Syntactic approaches have been dominant in areas like belief revision 

theory, and semantic ones in the dynamic logics we will discuss later on. The reader might 

want to keep this duality in mind, even as we will pursue the semantic road. 

 
2.5 Computation and the complexity profile of a logic 
 
While derivability and definability are the main pillars of logic, in recent years, there has 

been a growing awareness that issues of task complexity form a natural complement. Given 

that information has to be recognized or extracted to be of use to us, it is natural to ask how 

complex such extraction processes really are. We start with a well-known observation. 

 
Decidability In traditional modal logic, the interest in complexity has gone no further than 

just asking the following question. Validity in first-order logic is undecidable, validity in 

propositional logic is decidable: what about modal logic, which sits in between? 

 
Theorem Validity in the minimal modal logic is decidable. So is that for multi-S5. 

 
Proof One proof is via the effective finite model property: each satisfiable modal formula 

has a finite model whose size can be computed effectively from the length of the formula. 
19 One can first unravel the given model modulo bisimulation to a tree, and then cut the tree 

at a depth equal to the operator depth of the formula, while cutting width to a size matching 

the number of sub-formulas in the formula. Another proof notes that the earlier translation 

needs only two variables, and the 2-variable fragment of first-order logic is decidable. 

Further proofs use filtration, semantic tableaux, or analysis of sequent calculi.     ! 

                                                 
19 Note that this property typically fails for the full language of first-order logic.  
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Validity is decidable for many well-known modal logics. 20 But things change rapidly when 

we consider logics with combinations of modalities that show some ‘interaction’: 

 
Theorem The minimal modal logic of two modalities [1], [2] satisfying the axiom  

 [1][2]% & [2][1]%  plus a universal modality U over all worlds is undecidable. 

 
Proof In this logic, one can encode undecidable tiling problems on the structure INxIN 

(Harel 198x, Marx 2007). The reason is essentially that the given special axiom defines a 

grid structure satisfying the following first-order convergence property:  

 
 +xyz: (xR1y ' yR2z) & -u: (xR2u ' uR1z).         ! 

 
In a slogan: modal logics of trees are harmless, modal logics of grids are dangerous! 

 

 

   

           Tree       grid 

 
Since modal logics with such interaction axioms tend to occur in theories of agency, where 

we pile up descriptions of their separate abilities in terms of modalities, undecidability is 

always around the corner there (cf. Chapter 11). But in this chapter, we first look the other 

way, and enquire into the fine-structure of the decidable tasks that we do have. 

 
Complexity: a sketch Complexity theory studies the computation time or memory space 

needed for some computational task, measured as a function of input size. In particular, 

inside the decidable problems, it distinguishes ‘feasible’ rates of growth such as linear, 

quadratic, or general polynomial (the complexity class called P) from ‘non-feasible’ ones 

like non-deterministic polynomial time problems in NP, and beyond to polynomial space 

(Pspace), exponential time (Exptime), and ever higher up. To get some feeling for natural 

tasks calibrated in this way: roughly speaking, sorting a given sequence by magnitude, or 

finding a path from a given node of a graph to another ‘goal node’, takes quadratic time, 

                                                 
20 Validity is also decidable for many other modal logics over more specialized model classes.        

In particular, S5 may be translated into monadic first-order logic, which is obviously decidable. 
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parsing a sentence grammaticality takes cubic time, solving a Traveling Salesman problem 

is in NP, while finding a winning strategy in many parlour games is in Pspace. Making 

these notions precise is a bit tedious, and often puts people off by its accidental details of 

the workings of Turing machines or other devices. We will therefore stick with this basic 

outline, and rely on the reader’s intuitive understanding of the discussion to follow. 

 
Complexity profile of a logic To really understand how a logical system works, it helps to 

check the complexity for some basic tasks that it would be used for. Determining validity, 

or equivalently, testing for satisfiability of given formulas, is one of these: 

 
 Given a formula %, determine whether % has a model.  

 
But there are other, equally important tasks, such as model checking: 

 
 Given a formula % and a finite model (M, s), check whether M, s |= %.  
 
And here is a third key task, related to our discussion of invariance and expressive power, 

which one might call testing for model equivalence: 

 
 Given two finite models (M, s), (N, t), check if they satisfy the same formulas.  

 
Let us draw a table of the complexity profiles for two well-known classical logics around 

modal ones. Here entries mean that the problems are in the class indicated, and no higher: 
 
    Model Checking Satisfiability  Model Comparison 

 Propositional logic linear time (P)  NP      linear time (P) 

 First-order logic Pspace   undecidable   NP 

  
Where does the basic modal language fit? Its model-checking problem, i.e., its best 

performance using the above truth definition, turns out to be efficient, and fast. While first-

order model-checking requires a complete search through the whole model, repeated with 

every quantifier iteration and hence generating exponential growth, there are much faster 

modal algorithms. Also, close-reading the above decidability argument tells us where to 

locate satisfiability. Finally, the third basic task, of testing for modal equivalence, or 

equivalently, for the existence of a bisimulation, has turned out relatively efficient, too: 
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Fact The complexity profile for the minimal modal logic is as follows: 

 Model Checking Satisfiability  Model Comparison 

 Ptime   Pspace     Ptime 

 
Proof  (a) A best model-checking algorithm needs time steps of order length(%)*size(M)2. 

One computes truth values for all of %'s sub-formulas (there are length(%) of these), 

bottom-up, in all worlds of the model. For each sub-formula, this takes one pass through 

the model: size(M) steps.  The number of steps per world is bounded: we compute a truth 

value for (i) atoms (1 step look-up), (ii) a Boolean operator (! 3 steps), or (iii) <>  with 

$’s  truth values already marked in each world. The latter subroutine takes at worst size(M) 

steps, searching through all successors of the current world. (b) For satisfiability, the crux 

is that using the finite model property need not produce a whole model for a given formula, 

but one can check for its existence branch by branch, erasing ‘work space’, making do with 

polynomial space. (c) Finally, finding a bisimulation is a simple process of starting ‘from 

above’, with all links between all worlds in the two models, and then successively 

eliminating all links that could never make it into any bisimulation.      ! 

 
This is still sloppy. Our analysis of algorithms found an upper bound on the complexity of 

the logical task. To show a lower bound, one must prove that all algorithms solving the 

task have at least this complexity. One common method uses a set of ‘calibration problems’ 

whose precise complexity has been determined. One now reduce some such problem, say 

in NP or Pspace, to satisfiability in modal logic in polynomial time, for a lower bound.  
 
For epistemic logic, results are the same. But with S5, there is one difference. Single-agent 

satisfiability is in NP, since S5 allows for a normal form without iterated modalities, close 

to propositional logic. But with two agents, and two equivalence relations in the models, 

satisfiability jumps back to Pspace: social life is more complicated than being alone.  

 
Complexity results are affected by expressive power of the language. When we add our 

common knowledge modality CG% to epistemic logic, the above profile changes as follows: 

 
 Model Checking Satisfiability  Model Comparison 

 P   Exptime  P 
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Best algorithms for model checking with common knowledge are computationally clever; 

and the analysis of decidability changes. For our purposes, we just draw a general lesson. 

 
 ‘The Balance’: expressive power versus computational effort  In logic just as in physics, 

there is a ‘Golden Rule’ of design: what you gain in one desirable dimension, you lose in 

another. In particular, high expressive power of a system means high complexity. Thus, 

first-order logic itself is expressively weaker than second-order logic, the natural medium 

for defining many mathematical notions. But its poverty has a striking reward, viz. the 

recursive enumerability of valid consequence, and hence the Completeness Theorem, as 

well as powerful model-theoretic existence properties such as the Compactness Theorem. 

A major methodological issue in logic is then to strike a Balance between expressive power 

and computational complexity. Many modal logics are good compromises on this road. 

 
2.6 Games for logical tasks  
 
Computation is not just a routine ‘chore’ which measures difficulty of tasks: it is also a 

fundamental process in its own right. This comes out particularly well with game versions 

of logical tasks, which do not just ‘get the results’ extensionally, but also model the 

‘intensional’ procedural activity behind them in a vivid manner (van Benthem 2007). 

 
Evaluation games We cast the process of evaluating modal formula % in model (M, s) as a 

two-person game between a ‘Verifier’, claiming that % is true, and a ‘Falsifier’ claiming 

that it is false. The game starts at some world s. Each move is dictated by the main operator 

of the formula at hand (the total length is again bounded by its modal depth): 

 
Definition The modal evaluation game game(M, s, %). 

The rules of the games endow the logical operators with an interactive dynamic meaning: 

 
 atom p  test p at s in M: if true, then V wins – otherwise, F wins, 

 disjunction V chooses a disjunct, and play continues with that, 

 conjunction F chooses a conjunct and play continues with that, 

 <>%  V picks an R-successor t of the current world; play continues with % at t, 

 []%  F picks an  R-successor t of the current world; play continues with % at t. 

 
A player also loses when (s)he must pick a successor, but cannot do so.          ! 
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Example  A complete game tree. 

Again, we give an illustration in general modal logic. Here is the complete game tree for 

the modal formula !(!p # !!p) played starting at state 1 in the following model: 

 
     1 

 

   2    3   p 

 

                  4 

 
We draw game nodes, plus the player which is to move, plus the relevant formula.   Bottom 

leaves have ‘win’ if Verifier wins (the atom is true there), ‘lose’ otherwise.  
 
     1:F  ! (!p #  !!p) 

 

     2:V  !p #  !!p        3:V  !p #  !!p 

 

 2:V !p                 2:F !!p    3:V !p          3:F !!p 

 

 3  p       3:V  !p                2  p           4  p 2:V !p                4:V !p 

 win         lose           lose   

        4 p     3  p      2  p        3  p 

        lose       win      lose       win 

 
Each player has three winning runs, but the advantage is for Verifier, who can always play 

to ensure a win, whatever Falsifier does. Her winning strategy is indicated in black here: 

 
     1:F   

 

     2:V          3:V   

 

 2:V         2:F    3:V                3:F  

 

 3         3:V                     2               4     2:V                 4:V  

 win         lose           lose 

          4         3        2            3   

        lose       win      lose       win      ! 

 

A strategy can encode subtle dynamic behaviour: Verifier must hand the initiative to 

Falsifier at state 3 on the right if she is to win! The reason why Verifier has a winning 
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strategy is that she is defending a true statement. The background for these games and their 

properties is in Chapter 14, but the main point for us here is this simple observation: 
 
Fact For any modal evaluation game, the following two assertions are equivalent: 

 (a)   formula % is true in model M at world s, 

 (b)  player V has a winning strategy in game(M, s, %). 

 
Proof The proof is a straightforward induction on the formula %. This is a useful exercise to 

get a feel for the workings of strategies, and the ‘game dynamics’ of the modalities.    ! 

 

Model comparison games The next game provides fine-structure behind our invariance of 

bisimulation between models (M, s), (N, t). They involve a Duplicator (maintaining there is 

an analogy) and Spoiler (claiming a difference), playing over pairs (x, y) in the models.  

 
Definition Modal comparison games. 
 

In each round of the game, Spoiler chooses a model, and a state u which is a successor of x 

or y, and Duplicator responds with a corresponding successor v in the other model. Spoiler 

wins if u, v differ in their atomic properties, or Duplicator cannot find a successor in ‘her’ 

model. The game continues over some finite number of rounds, or infinitely.     ! 

 
There is a tight connection between these games, and modal properties of the two models: 

 
Fact (a)  Spoiler's winning strategies in a k-round game between (M, s) and (N, t)    

 match exactly  the modal formulas of operator depth k on which s, t disagree. 

 (b) Duplicator's winning strategies in the infinite round game between  

 (M, s) and (N, t) match the bisimulations between M, N linking s to t. 

 
It is not hard to prove this result generally, but we merely give some illustrations. 

 
Example ‘Choosing now or later’. 

Consider the game between the following two models starting from their roots: 
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Spoiler can win the comparison game in 2 rounds – and different strategies do the job. One 

stays inside the same model, exploiting the modal difference formula <a>(<b>T & <c>T)   

of depth 2 with uniform modalities. Another winning strategy for Spoiler switches models, 

but it can make do with the modal formula [a]<b>T which contains only 2 operators in all. 

The switch is signaled by the interchange in the modalities.          ! 

 

Games for satisfiability or model construction Games for model construction sometimes 

use semantic tableaux (van Benthem, to appear). Here we state a more abstract version: 
 
Definition A modal satisfiability game. 

Let G = (S, RI, RII), with S being all sets of (negated) sub-formulas of some given formula 

%, and s0 = {%}. Player I defends the SAT-claim; II challenges it. From a winning strategy 

for player I, one gets a model. Call a state s"S  full if (a) for each formula in s, each of its 

sub-formulas is either in s, or has its negation in  s (never both), (b) conjunctions in s have 

both conjuncts in s, disjunctions in s have at least one disjunct in s. The modal rank of s is 

the maximum of all modal ranks of formulas in s. As for moves, RI has all transitions (s, s') 

where s' is a full state extending s of the same modal rank – and RII has all transitions from 

s to s' where some formula 2 has !2 " s and s' = {2} ( {1 | []1 " s}. 21       ! 

 
Fact (a) Player I has a winning strategy in the game from G, s0 iff % #  SAT, 

 (b)   G, s0 always terminates within m rounds, with m the modal depth of % , 

 (c)  all states s are polynomially-sized bounded in length(%). 22 

 
This concludes our first introduction to logic games, which show modal logic, and hence 

also epistemic logic itself in a dynamic interactive light. We discuss this issue of logics 

themselves being dynamic objects at greater length in (van Benthem, to appear). For here, 

just observe that that the above game trees themselves are modal models. This is a foothold 

for applications of modal logic to game theory, as we will see starting from Chapter 10. 

 

                                                 
21 To understand these moves, it helps if you have seen a Henkin-style completeness argument. 
22 This is an alternative proof that satisfiability for the minimal modal logic is in Pspace.  
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2.7 Summary and conclusion 
 
We have surveyed epistemic logic in a somewhat unusual manner. Our purpose has been 

three-fold. First, we needed to lay the groundwork for the notions and techniques that will 

be used later on in this book. Next, we wanted to shake off the philosophical dust which 

makes people think that epistemic logic is a failed attempt at grasping the epistemological 

notion of knowledge, whereas it is better viewed as a logic for the notion of semantic 

information. And finally, we have presented it as a role model for what we take a logical 

system to be, a combination of three main aspects: (a) expressive power of definition, (b) 

inferential power of deduction, and (c) computational task performance, eventually leading 

to a suggestive interactive embodiment of the logic itself in dynamic games. 

 
2.8 Appendix: further topics and open problems 
 
There are many further issues about knowledge, information, and logic that we have left 

out here. A few were mentioned already, such as connections with dynamic logic and 

modal fixed-point logics, or the contrast between first person and third person perspectives 

in interpreting our models. We mention a few more, with pointers to the literature.  

 
Internal versus external logical views of knowledge Epistemic logic builds on standard 

classical propositional logic, while adding explicit operators for knowledge. By contrast, 

intuitionistic logic treats knowledge ‘internally’ by ‘epistemic loading’ of the interpretation 

of standard logical constants like negation and implication. Van Benthem 1993, 2008 

discuss the contrast between the two systems, and draw deeper comparisons. The dynamic 

content of intuitionistic logic involves observational update (Chapter 3), awareness-raising 

actions (Chapter 5), as well as  ‘procedural information’ in the sense of Chapter 11. The 

final section of Chapter 5 supplies some details. Even so, there is a general question what a 

more intuitionistic-style version would look like for the dynamics explored in this book. 

 
Agent powers and diversity Epistemic logic incorporates a number of idealizations about 

agents having information. They possess unlimited deductive powers, and there are also 

more hidden assumptions of perfect memory, that will return in Chapters 3, 4. How can we 

lift this, and make our logics an account of actual agents with bounded rationality? Liu 

2007 is a discussion of the main issues, with first attempts a finding ‘parameters’ inside 
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dynamic-epistemic logics that allow for cooperation between diverse agents. But in 

general, the theory of this book is about idealized agents still, and we need extensions. 

 
Topological models Relational possible worlds models are a special case of a more general, 

and historically older semantic paradigm for modal logic, viz. topological models. Let M 

be a topological space (X, O, V) with points X, a family of open sets O, and a valuation V 

as in modal models. Now we can interpret a modal language as follows: 

 
Definition Topological semantics. 

! is true at point s in M, written M, s |= !!, if s is in the topological interior of [[!]]M:    

the set of points satisfying ! in M. Formally, -O"O: s"O & +t"O: M, t |= !.       !  

 
The existential !"denotes topological closure. Typical topologies are metric spaces like the 

real line, or trees with the closed sets in the tree order as opens. The latter coincides with 

relational semantics. In this setting, the modal axioms of S4 state topological properties: 

!! & ! is inclusion, !!! * !! is idempotence, and !(! '  $) * !! '!$ is closure 

of opens under intersections. Infinitary distribution, valid in relational semantics, fails here: 

 
Example !' i"I pi * ' i"I!  pI fails on metric spaces.  

Interpret pi as the open interval (–1/i, +1/i), all i"N. The !pi denote the same interval, and 

their intersections are the intersection {0} of all these intervals. But the expression !' i"I pi  

denotes the topological interior of the singleton set {0}, which is the empty set 3.      !  

 
A general completeness result says a modal formula is topologically valid iff it is provable 

in S4. 23 There are also much deeper special completeness results, such as the fact that S4 is 

complete for all validities on metric spaces without isolated points, like the reals. All earlier 

modal techniques generalize, including a notion of ‘topological bisimulation’ related to 

homeomorphisms and continuous maps, plus a vivid matching model comparison game. 24 

 

                                                 
23 The minimal modal logic arises over the generalized class of neighbourhood models where  

the topological structure is replaced by an abstract point–to-set neighbourhood relation RxY.  
24 The Handbook Aiello, Pratt & van Benthem, eds. 2007 has several relevant chapters. 



 52 

Van Benthem & Sarenac 2005 use this semantics for epistemic logic in this way, showing 

how the multi-agent setting leads to families of topologies closed under certain operations 

that correspond with group-forming operations. In particular, they exploit the failure of 

infinitary distribution to show the following separation of iterative and fixed-point views of 

common knowledge – a distinction argued for intuitively by Barwise in the 1980s: 

 
Theorem Common knowledge defined through countable iteration as truth in all  

finitely reachable worlds is strictly weaker than common knowledge defined  

as a greatest fixed-point for the above equation CG !  *  ! & EG CG !. 

 
Moreover, the standard ‘product topology’ on topological spaces provides a form of group 

knowledge stronger than both, in line with what has been called ‘having a shared situation’.  

 
There is a general issue of extending the theory of this book from relational models to 

topological semantics. This makes sense especially since some semantic models proposed 

for belief revision have a topological flavour, often in the form of slightly more abstract 

‘neighbourhood models’. Frankly, we are not even sure of the best definitions for general 

update (Chapters 4, 6) in this generalized setting, so we must leave this open here. 


