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This short note will discuss logical frameworks for reasoning about an agent’s
ability. We will sketch details of logics of ‘can’, ‘do’, and ‘intention’. This note
is not meant to be a complete survey of the relevant literature, but rather a
starting point for an investigation in logics that can express what actions agents
can perform and what state of affairs they can bring about. We assume familiarity
with basic modal logic, (propositional) dynamic logic and basic temporal logic.

1 Pre-formal Intuitions

The logics that we will explore in this paper all have syntactic objects that are
meant to represent an action. For example, the propositional dynamic logic (PDL)
formula ‘[α]ϕ’ is intended to mean “after the action α is performed then ϕ is
true”. Already here there are a number of philosophical issues about the nature
of actions that can influence the formal models we sketch below (see [17] for a
survey of the main issues and pointers to relevant literature). Leaving aside much
of this philosophical discussion, each of the frameworks that we present below
treat actions as transitions between states, or situations, as pictured below.
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This simple picture describes our basic view of actions: an action relates one state
to another state1.

The primary topic of this note is not only how to formalize that an action a is
performed, but also agent-oriented properties. Specifically, we will study logical
frameworks that address what it means that an agent can do action a, or that

1In the above picture, the action a is deterministic (there is only one a-labeled arrow), but
this is not necessary for our subsequent discussion — actions may be non-deterministic.
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the agent has the ability to do action a? A related question is how to formalize
that an agent can “bring about” (the truth of) some formula ϕ, or “see to it that”
a formula ϕ is true. We start with some intuitions about what it means for an
agent i to be able to do some action a or bring about some formula ϕ:

1. Control: The action a should be in the control of agent i or the truth of ϕ
should be under i’s control.

2. Repeatability: Agent i should be able to repeatedly do action a or re-
peatedly bring about formula ϕ. Consider a game of darts where a player
throws a bulls-eye. Intuitively, we only say that the player has the ability
to throw a bulls-eye if he can repeatedly hit the center of the dart board.
Alternatively, we can say that the player can predictably throw a bulls-eye.

3. Avoidability: Agent i should be able to avoid doing action a. So, agents
do not have the ability to bring about propositional tautologies.

4. Free-will: Agent i should be free to decide whether or not to do action a.
That is, the agent should have a choice as to whether or not to do action a
or bring about formula ϕ.

5. Causality: Agent i should cause action a to take place or the formula ϕ to
become true.

6. Intentionality: Agent i should intentionally do action a or bring about ϕ.

Of course, there is a large philosophical literature accompanying each of the last
three issues (the relevant entries in the Stanford Encyclopedia of Philosophy is a
good place to start investigating the literature). The literature on logical frame-
works that address the questions raised above is rather difficult to pin down. A
special issue of Stuida Logica (Volume 51, Numbers 3-4, 1992) edited by Krister
Segerbeg contains many relevant article. The first paper in this issue by Segerberg
[14] contains an excellent account of a number of relevant formal systems (by now,
the discussion is somewhat dated). David Carr has an interesting discussion (in
part) about having the physical ability to do an action and knowing how to do an
action [3]. Finally, the article by Meyer and Veltman [11] from the Handbook on
Modal Logic contains an account of a number of logical frameworks for reasoning
about actions, agency and abilities.

In the following sections we will sketch the details of a few logical frameworks
from the literature. Again, our goal is not to provide a comprehensive survey, but
rather highlight of few different approaches.
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2 General Modal Frameworks

This approach looks for general modal principles that fit our intuitions about
actions and agent’s abilities. Much of the work here can be viewed as an attempt
to formalize various philosophical positions. Here we see familiar modal logics
interpreted as logics of action and ability. Consider, for example, the following
system proposed by Ingmar Pörn [?]. Pörn uses a simple propositional modal
language with expressions of the form Do(A) intended to mean “the agent does
A”, or “brings about A”. The logic proposed in the modal logic T:

K Do(A→ B)→ (Do(A)→ Do(B))
T Do(A)→ A
Nec if ` A then ` Do(A)

Formulas are interpreted in the usual Kripke structures. While some of the above
axioms are intuitively appealing (eg., the T axioms says that “if the agent does
A then A is the case”), there are some less desirable consequences of the above
system. In particular all of the following are derivable in the above axiom system
(actually, all the following are derivable without the T axiom):

1. If ` A→ B then ` Do(A)→ Do(B)

2. Do(A) ∧Do(B)→ Do(A ∧B)

3. Do(>)

Note that the last formula is inconsistent with intuition 3 from the previous sec-
tion: agents should be able to avoid doing an action. Contrary to this principle,
formula 3 above says that an agent can always “bring about” a tautology.

Various researchers have investigated variants of the above axiomatization (see
[7] for the references). Dag Elgesem identified a core set of axioms [6] in a bi-modal
language with CA meaning “the agent is capable of realizing A” and EA meaning
“the agent brings about A”:

1. All propositional tautologies

2. ¬C>

3. EA ∧ EB → E(A ∧B)

4. EA→ A

5. EA→ CA
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plus the rules modus ponens and substitution of equivalent formulas (from A ↔
B we can infer both EA ↔ EB and CA ↔ CB). The above logic is a non-
normal modal logic2 and so the usual Kripke semantics can no longer be used3.
Governatori and Rotolo [7] investigate the completeness of the above system with
respect to various standard approaches of providing semantics for non-normal
modal logics including Kripke structures with impossible worlds4 and neighborhood
structures5.

3 Dynamic Logic Frameworks

The frameworks here draw on the extensive literature (mostly by computer sci-
entists) on propositional dynamic logic [8]. In PDL, (complex) actions are part of
the logical language. That is, in standard PDL, formulas and actions expressions
are generated by mutual recursion:

ϕ := p |¬ϕ | ϕ ∧ ϕ | [α]ϕ

α := a | α;α | α ∪ α | α∗ | ϕ?

where p is a propositional variable and a is an atomic action. The formula [α]ϕ
means “after executing action α, ϕ is true”. The intended interpretation of the
action expressions are as follows:

1. Concatenation: α; β. FIrst do α then do β.

2. Nondeterministic Choice: α ∪ β. Either execute α or β.

3. Kleene Star: α∗. Execute α any finite (including 0) number of times.

4. Test: ϕ?. This action does not change the state and succeeds provided ϕ is
true (at the state where it is executed).

2A modal logic is normal if it contains the K axiom 2(A→ B)→ (2A→ 2B) and the rule
of necessitation — K is the minimal normal modal logic. A modal logic is non-normal if it is
not normal.

3The K axiom is valid on any Kripke frame and so will be contained in any complete logic
over any class of Kripke frames.

4An impossible world is a world where all formulas are possible, but no formula is necessary.
That is, all formulas of the form 3A are true but all formulas 2A are false.

5Neighborhood models as a semantics for modal logic was invented in the 1970s by Richard
Montague and Dana Scott. A neighborhood model generalizes a Kripke structure by assigning
to each state w a collection of subsets of states, i.e., the collection of sets that are necessary
at w. In a neighborhood model, 2ϕ is true at w provided the set of states that satisfy ϕ is in
the neighborhood of w (the collection of sets assigned to w). See [12] for complete discussion of
neighborhood structures as a semantics for modal logic.
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Formulas of PDL are typically interpreted in labeled transition systems where
the actions are interpreted as paths (see [8] for details). PDL was introduced by
Vaughn Pratt to reason about computer programs, but what about interpreting
PDL as a logic of actions in the sense discussed in this paper?

An early approach to interpret PDL as logic of actions was put forward by
Krister Segerberg [13]. Segerberg adds an “agency” program to the PDL language
δA where A is a formula. The intended meaning of the program ‘δA’ is that the
agent “brings it about that A’. As usual, the interpretation of δA is a set of
paths. Segerberg interprets the action δA as the set of all paths p in a fixed
labeled transition systems such that

1. p is the computation according to some program α, and

2. α only terminates at states in which it is true that A

Interestingly, Segerberg also briefly considers a third condition:

3. p is optimal (in some sense: shortest, maximally efficient, most convenient,
etc.) in the set of computations satisfying conditions (1) and (2).

But this last condition is not pursued. Segerberg extends the usual PDL axioma-
tization6 with the following two axioms

1. [δA]A

2. [δA]B → ([δB]C → [δA]C)

This general framework has been used as a logic for reasoning about agents and
their abilities (see, for example, [4] and [5] for discussions).

4 Temporal Logic Frameworks

Alternative accounts of agency do not include explicit description of the actions
as in the previous section. Instead the frameworks are based on a branching-time
structure. That is, formulas are interpreted in trees where branching is interpreted
as a choice for the agent. Consider the picture below:

6Actually, the usual axioms of PDL was proposed by Segerberg and proved complete with
respect to the standard semantics by Rohit Parikh.
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t0 t1 t2 t3

· · ·

· · ·

Each node represents a choice point for the agent. A history is a maximal branch
in the above tree. Formulas are interpreted at history moment pairs. For example,
let h be the highlighted history above, then we may interpret formulas at (h, t1).
The key modality is [stit]ϕ which is intended to mean that the agent i can “see
to it that ϕ is true”. There are different definitions proposed for interpreting
the above modality. One example is deliberative stit, where [stit]ϕ is true at a
history moment pair provided the agent can choose a (set of) branch(es) such
that every future history-moment pair satisfies ϕ and there is a choice agent i
can make in which ϕ becomes false7. This framework is explored (among other
places) in the book by Belnap, Perloff and Xu [2] and more recently by Horty in
[9]. Complete axiomatizations can be found in the article by Xu [18] and more
recently by Balbiani, Herzig, and Troquard [1].

We end this section with a brief discussion (based on [9, pg. 20-21]) to illus-
trate some of the main ideas of this framework. We first need some notation. If T
is a tree (as above) and t is a moment, then Ht is the set of histories going through
t. A choice at moment t, denoted Choicet is a partition of Ht with Choicet(h)
the partition cell in Choicet containing h. Then [stit]ϕ is true at history moment
h/t provided Choicet(h) ⊆ |ϕ|t and |ϕt| 6= Ht. Formulas are interpreted at his-
tory/moment pairs and we write |ϕ|t = {h ∈ Ht | ϕ is true at h, t}. We use the
modality ‘3’ to mean historic possibility. That is 3ϕ is true at a history moment
pair h, t provided there is some history h′ ∈ Ht such that ϕ is true at h′, t. Horty
considers the following definition individual ability: an agent has the ability to
bring about ϕ at a history moment h/t provided 3[stit]ϕ is true at h/t.

Consider the example of an agent (call her Ann) throwing a dart. Suppose
Ann is not a very good dart player, but she just happens to throw a bull’s eye.

7There is another proposal in the literature, called cstit (which stands for Chellas-stit, named
after Brian Chellas) which is true provided the agent can make a choice to guarantee ϕ is true.
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Intuitively, we do not want to say that Ann has the ability to throw a bull’s eye
even though it happens to be true. That is, the following principle should be
falsifiable:

ϕ→ 3[stit]ϕ

Continuing with this example, suppose that Ann has the ability to hit the dart
board, but has no other control over the placement of the dart. Now, when she
throws the dart, as a matter of fact, it will either hit the top half of the board or
the bottom half of the board. Since, Ann has the ability to hit the dart board,
she has the ability to either hit the top half of the board or the bottom half of the
board. However, intuitively, it seems true that Ann does not have the ability to
hit the top half of the dart board, and also she does not have the ability to hit the
bottom half of the dart board. Thus, the following principle should be falsifiable:

3[stit](ϕ ∨ ψ)→ 3[stit]ϕ ∨3[stit]ψ

The following model will falsify both of the above formulas:

h1 h2 h3

K1 K2

A
¬B

¬A
B

¬A
¬B

t

Here, for example, A is true at h1, t and false at h2/t and h3/t, so |A|t = {h1}. The
agent’s choice at t is Choicet = {K1, K2} = {{h1, h2}, {h3}}. We leave it to the
reader to check that both A→ 3[stit]A and 3[stit](A∨B)→ 3[stit]A∨3[stit]B
are false at h1/t.

5 The Situation Calculus

The situation calculus is a framework for talking about knowledge and ability
of agents popular in the AI literature (it was introduced by John McCarthy in
1969). Formally, the situation calculus is a second-order many-sorted logic (see, for
example, [10] for a discussion of the framework and [16] for a comparison between
the situation calculus and related modal frameworks). A typical formula in the
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situation calculus is Result(s, a) = s′ which says that “the8 result of executing
action a in situation s is situation s′”.

For this paper, our interest is with the expression Can(s, ϕ) which is intended
to mean that “the agent can achieve ϕ in situation s”. A possible definition is:

Can(s, ϕ) := ∃a(Result(s, a) satisfies ϕ)

Here ‘a’ may be a complex action. So, Can(s, ϕ) holds if in situation s there
is some (possibly complex) action that results in a state satisfying ϕ. Hector
Levesque and colleagues offer the following refinement of this definition of what
an agent can do in a situation [10]. The main idea is that it is not enough for
there to exist an action that leads to a situation satisfying ϕ, in addition the agent
must know that the action leads to a state satisfying ϕ. A fixed-point definition
is offered to make this intuition formal: Can(s, ϕ) is true provided

1. if K(s, ϕ) (the agent knows ϕ in situation s) is true

2. if ∃aK(Result(s, a), Can(Result(s, a), ϕ))

This definition raises an interesting question: what does it meanfor an agent to
know how a plan will achieve its goal9?

6 Logics of Intention

There are a variety of logical frameworks for reasoning about not only agent’s
knowledge/beliefs and abilities but also motivational attitudes such as intentions.
We will not discuss these frameworks here and refer to the textbook [15, Section
14.4] for details.
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