
PHIL 151 Winter 2008

Final Exam
(100 points)

Honor Code: Each question is worth 10 points. There is one
bonus question worth 5 points. In contrast to the homework
assignments, you may not collaborate on this final exam. You
may not discuss the exam with anybody but the TAs and the
instructor, who will only answer clarification questions. You
may use no books other than the Enderton textbook and the
notes on modal logic. Good Luck!

1. (10 points) For each of the following parts, give an example of a theory T with the
given property or explain why there is none:

(a) T is complete

(b) T is not complete

(c) T has only finite models

(d) T has only infinite models

(e) T has only countably infinite models

2. Consider the first-order language with equality and one binary predicate symbol ‘<’.
Let ∆ be the set of sentences expressing that < is a dense linear order without end-
points. That is, ∆ consists of the five sentences given on page 159 in Enderton.

(a) (10 points) Using Cantor’s Theorem, prove that if A and B are dense linear
orderings without endpoints, then A and B are elementarily equivalent.

3. (10 points) Recall the liar’s paradox “This sentence is false” which (suitably formal-
ized) has been put to much use in the logic and set theory. The following result, first
proved by Alfred Tarski, has been used to argue that we cannot give a coherent se-
mantics for any language that, like English, contains its own truth predicate.

Suppose that L is a first-order language with at least one constant symbol and that L+

is the result of adding a new unary predicate symbol T to L. We say that a structure
B for L+ extends a structure A for the language L provided |B| = |A| and for each
constant symbol, predicate symbol and function symbols S of L, we have SB = SA.
[So, when B extends A, B interprets the language L in the same way that A does and
B also interprets the new symbol T]. We say that a structure A for L is a ground
structure provided every every sentence of L+ is a member of |A|. Finally, given a
ground structure A for L and an extension B of A, we say that T is a truth predicate
for B provided, for every sentence ϕ of L+, we have B |= Tx[[ϕ]] iff B |= ϕ, i.e., Tx is
true in B with ϕ assigned to x iff ϕ is true in B.

Page 1 of 6

PHIL 151 Winter 2008

Show that there is a ground model A that cannot be extended to a model B for which
T is a truth predicate.

4. Definitions appear in almost any field of inquiry. Some of the techniques we learned
this quarter allow us to analyze more precisely what constitutes a definition and what
different kinds of definitions there are. In this exercise we look at three types of
definitions that came up during the quarter and their interconnections: 1. defining a
relation or function in a fixed structure, 2. an explicit definition in the language, and
3. a recursive definition.1

To simplify things, we will only consider the case of defining a new function symbol in
terms of other function symbols, but the story can be extended to relation symbols as
well.

First, recall the notion of definability in a structure that we discussed in class (recall
Enderton pg. 90). We can simplify that definition for the case of functions and
terms as follows: consider a structure A. Any term t(v1, . . . , vn) with free variables
among {v1, . . . , vn} defines an n-ary functions Ft : |A|n → |A| in A as follows:
Ft(a1, . . . , an) = tA[a1, . . . , an]. Another way to state this is

Ft(a1, . . . , an) = s(v1|a1, v2|a2, . . . , vn|an)(t)

where s is a substitution. In other words, terms t with n-free variables define n-ary
functions on A.

While this notion of definability is useful, it is limited to specific structures and doesn’t
quite capture that we normally use definitions when introducing new symbols to the
language. The following notion overcomes this limitation. It captures we we do when
we define a new function in mathematics with respect to some background knowledge
by saying “let f(x, y) = α(x, y)” where α(x, y) is some expression not involving f .

Let T be a theory in some language L and let f be some n-ary function symbol in L.
Let L0 be L−{f} (so, L extends L0 by adding the functions symbol f). Then we say
that a term t(v1, . . . , vn) in L0 defines f explicitly in T iff

∀v1∀v2 · · · ∀vn(f(v1v2 · · · vn) = t(v1, . . . , vn)) ∈ T

The crucial thing is that t(v1, . . . , vn) does not involve f .

(a) (10 points) Consider the languages L and L0 as above with f in L and t is L0.
Let A be a structure in the language L. Show that t defines a functions fA in A
iff t explicitly defines f in Th(A).

It seems that these two notions of definability really amount to the same thing after all.
So, what is the use of the notion of “explicit definability”? An example will illustrate

1In particular, the following questions focus on the deference between explicitly definitions like “x is
defined as the smallest prime number bigger than 1000” and recursive definitions like “¬p is true iff p is not
true”.

Page 2 of 6

PHIL 151 Winter 2008

its usefulness. Consider the first-order language with equality, a constant symbol 0,
a unary functions symbol S and a binary function symbol +. Let N be the standard
model of arithmetic for this language, where the domain is N, SN is the successor
function, 0N is 0 and +N is addition. Let T consist of the following four sentences:

1. ∀x(Sx 6= 0)

2. ∀x∀y(Sx = Sy → x = y)

3. ∀x(x+ 0 = x)

4. ∀x∀y((x+ Sy) = S(x+ y))

Note that T contains a recursive definition of addition in terms of successor, and that
N is a model of these axioms. Does the recursive definition also yield an explicit
definition?

(b) (10 points) It can be shown that there is no term without the + symbol that
defines the addition function in N . Use this fact to show that there is no term
(without +) that defines + explicitly in Cn(T).

This raises the question in what way a recursive definition is actually a definition.
What the two recursion equations for addition above allow us to do is compute. More
precisely, call a term closed if it contains no variables. Then for any closed term
that involves the addition symbol +, we can eliminate + and obtain a term that
only contains 0 and S, which essentially corresponds to a natural number (eg., SS0
corresponds to 2). What is essential here is to consider closed terms.

(c) (10 points) Show that for every closed term t1 there is a closed term t2 not
containing + such that t1 = t2 ∈ Cn(T).

Hence, while an explicit definition would allow us to eliminate + in an aribtrary context
like Sx+ SSy, there recursive definition allows us to eliminate + only for closed terms
(eg., S0+SS0 can be relaced with SSS0 through repeated applications of the recursion
equations.)

5. We have already noticed an analogy between the modal operator ‘2’ and the universal
quantifier ‘∀’. In this question, we will make this connection more formal. There is
a precise sense in which the modal language is a fragment of the first order language.
Let L be the basic modal language built with At = {p, q, r, . . .} the set of atomic
propositional letters. The first order language L1 corresponding to L contains a binary
relation symbol R and for each atomic propositional letter p ∈ At, a unary predicate
symbol P. Any modal modelM = 〈W,R, V 〉 can be viewed as a (first-order) structure
for L1 where the domain of M is W , the interpretation of R is the relation R (i.e.,
RM = R) and for each unary predicate symbol P (corresponding to atomic proposition
p ∈ At), PM = {w | V (w, p) = T}.

Page 3 of 6

PHIL 151 Winter 2008

Now we can (faithfully) translate the modal language into the first-order language.
Formally, we define a map ST : L → L1 sending modal formulas to first-order (L1)
formulas with one free variable as follows:

STx(p) = Px

STx(¬ϕ) = ¬STx(ϕ)

STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ)

STx(2ϕ) = ∀y(Rxy → STy(ϕ)) (where y is a new variable)

STx(3ϕ) = ∃y(Rxy ∧ STy(ϕ)) (where y is a new variable)

For example,

STx(23p ∧2¬q) = ∀x1(Rxx1 → ∃x2(Rx1x2 ∧ Px2)) ∧ ∀x3(Rxx3 → ¬Qx3)

We first check that this translation preserves truth:

(a) (10 points) Show that for all modal formulas ϕ ∈ L and modal models M =
〈W,R, V 〉, for all states w ∈ W ,

M, w |= ϕ iff M |= STx(ϕ)[[x|w]]

Now, it is clear that not all formulas of L1 are translation of modal formulas (i.e., of
the form STx(ϕ) for some modal formula ϕ). For example, ∀y(Px → Rxy) is not of
the right syntactic form. However, for some L1 formulas ϕ, even if ϕ is not of the form
STx(ψ) for some modal formula ψ, ϕ may be logically equivalent to such a formula.

(b) (10 points) Is ∃y(Rxy∧¬Ryx∧Py) logically equivalent to the standard translation
of some modal formula? (i.e., does there exists a modal formuls ψ such that
∃y(Rxy ∧ ¬Ryx ∧ Py) is logically equivalent to STx(ψ)?) If yes, provide the
modal formula. If the answer is no, explain why.

A natural question is which formulas of L1 are equivalent to translations of modal
formulas? The answer to this is beyond the scope of the course (the theorem that
answers this question is called the Van Benthem Characterization Theorem and will
be discussed in PHIL 154). What is interesting for us is that the standard translation
can be used to transfer results about first-order logic to modal logic:

(c) (10 points) Use the standard translation and part (a) above to prove a Löwenheim-
Skolem Theorem for modal logic (if a modal formula is satisfiable, then it is
satisfiable in a countable model) and a Compactness Theorem.

6. For most of this quarter we worked with first-order languages. The previous question
demonstrates that modal logic can be viewed as a fragment of first-order logic. So,
the language of modal logic is really “short-hand” for first-order formulas of a certain
syntactic shape. In fact, there are many restrictions to the first-order language that

Page 4 of 6

PHIL 151 Winter 2008

one can imagine. For example, one may be interested in quantifier-free sentences (i.e.,
propositional sentences), the universal fragment (formulas only containing universal
quantifiers), or formulas of the form ∀x∃yϕ(x, y) were ϕ(x, y) is quantifier-free. An-
other restriction that has turned out to be interesting focuses on the number of distinct
variables that you allow in a formula. For example, the formula ∃y∀x(Rxy ∧ ∃zRyz)
uses2 three distinct variables (x, y and z). After some thought, it is not too hard
to realize that there is no need to introduce a new variable z. That is, the formula
∃y∀x(Rxy∧∃xRyx) says the same thing with only two variables. In fact, one can show
that the standard translation defined in the previous question can be defined making
use of only two variables. This shows that modal logic falls inside the two variable
fragment of first-order logic3

(a) (10 points) Consider the first order language with one binary predicate symbol E
and two constant symbols a and b. Models for E can be thought of as (directed)
graphs. For each n, we can write a first-order sentence Pathn(a, b) expressing
that there is a path of length n from a to b (this is essentially what was needed to
solve Enderton #8, pg. 146 from Homework 6). Show that for each n, there is a
formula Pathn(a, b) using only two variables that states there is a path of length
n from a to b. [Note that you will have a different formula for each n, but each
formula will use only two variables.]

(b) Bonus Question Suppose that Path∗n(a, b) means “there is a path of length
n between a and b and there is no other path between a and b”. Show that
Path∗n(a, b) can be defined in first-order logic using only three variables.

A fascinating result of Dana Scott shows that the two variable fragment of first-order
logic is decidable (by contrast, already the three variable fragment of first-order logic
is known to be undecidable). Philosophy 152 will study the formal machinery needed
to understand this result.

The above questions focused on fragments of first-order logic. Much work has also
focused on possible extensions of first-order logic (for example, see Enderton Chapter
4). The first question that one always asks is whether a particular extension to the
first-order language really adds something new. For example, consider the quantifier
∃!xϕ(x) which means “there is a unique x satisfying ϕ”. It is not hard to see that
this is logically equivalent to a formula of first-order logic. So, adding ∃!x to a first-
order language does not really add anything new. However, this is not always true.
For example, consider ∃fxϕ(x) which means that there are finitely many elements
satisfying ϕ. Formally, A |= ∃fxϕ[s] iff |{a | A |= ϕ[s(x|a)]}| = n where 0 6= n ∈ N is
a non-zero natural number. In fact, one can show that there is no first order formula

2Of course, there are more occurrences of variables (in this case 7), but we are interested in the variables
used not the occurrences.

3The question arises as to whether modal logic is exactly the two-variable fragment. That is, is there a
first-order formula using only two variables that is not equivalent to the standard translation of some modal
formula? The answer to this is yes: ¬xRx is a formula expressing that the current state not related to itself
(i.e., it is irreflexive). An argument using bisimulations (as discussed in class) shows that there is not modal
formula that expresses that the current state does not have a reflexive arrow).

Page 5 of 6

PHIL 151 Winter 2008

equivalent to ∃fxϕ(x). This also shows that, for example, there is no first-order formula
that expresses “there is a finite path from a to b”. The raises an interesting question:
what makes a logic first-order? A fascinating result by Per Lindström shows that first-
order logic is the “strongest” logic having the Compactness and Löwenheim-Skolem
Theorems.

The midterm is DUE Wednesday, March 18 at noon.

Hints

General Hint: None of the questions require you to do long and complicated constructions.
The main challeng is understanding what the question asks and understanding the concepts
involved. So if you find yourself going on for pages constructing a particularly ingenious
mode, set of sentencees, etc., you are probably on the wrong track, or at least, on an
elaborate detour.

1. none

2. You need to use the downward Löwenheim-Skolem Theorem

3. Note that ground models are similar to the term models we looked at when proving
the completeness theorm for FOL and ML. In the case of the canonical model and
ground models, elements of the domain are expressions from the language. Construct
a counter model and use the constant to refer to a liar sentence. Show that T is not a
truth predicate.

4 (a) This is really just unpacking the definitions.

4 (b) Assuming that there is no term without the + symbol that defines the addition function
in N , prove that there is no term (without +) that defines + explicitly in Cn(T). Use
the previous exercise and relate Th(N) to Cn(T).

4(c) Give a proof by induction on t1. Note that the set of closed terms in this language is
inductively generated from the constant 0 by the term building operations of + and
S. Finally, observe that you are NOT supposed to show that t1 = t2 is ture in the
standard model, but rather that it can be deduced from T . Not all axioms of T may
be needed here.

5 (a) Use a proof by induction on the structure of ϕ.

5 (b) Use the modal invariance lemma (that bisimulations preserve truth).

5 (c) no hint

6 (a) no hint

Page 6 of 6

